бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Развитие логического мышления учащихся при решении задач на построение бесплатно рефераты

Поэтому после введения определения симметричных относительно оси точек, внимание учащихся переклю­чаем на практику построения взаимно симметричных относительно оси фигур, для чего решаем задачи  вида:

1) Построить точку, симметричную данной точке от­носительно данной прямой.

2) Построить отрезок (прямую), симметричный дан­ному отрезку (прямой)  относительно данной прямой.

3) Построить треугольник, симметричный данному треугольнику относительно данной прямой.

4) Построить окружность, симметричную данной ок­ружности относительно  данной  прямой.

5) Построить треугольник, симметричный данному прямоугольному треугольнику относительно а) его ка­тета;  б) его гипотенузы.

При решении этих задач одновременно устанавливаем и равенство взаимно симметричных отрезков, углов и других фигур, иллюстрируя наши утверждения пере­гибанием чертежа по оси симметрии, что помогает най­ти и сделать понятным способ решения задачи. Напри­мер, при решении задач вида: «Даны две прямые. Най­ти на них точки, симметричные относительно третьей прямой» очень удобно нанести все три прямые на кальку и перегнуть чертеж по третьей прямой. Тогда решение задачи становится очевидным и понятным для всех учащихся. Таким же образом решаем задачи: а) Даны прямая и треугольник. Найти на одной прямой и на кон­туре треугольника точки, симметричные друг другу от­носительно другой прямой, б) Даны окружность и тре­угольник. Найти на окружности и на контуре треуголь­ника точки, симметричные друг другу относительно данной  прямой.

Чтобы показать учащимся важность и необходимость умений и навыков в построении симметричных относительно оси точек, кроме разбора известных уже им при­меров, полезно выполнить разметку какого-нибудь из­делия, которое нужно будет изготовлять в ближайшее гремя.

5.  Обучение должно вестись так, чтобы учащиеся усвоили знания не как изолированные, оторванные от других, а как подготовленные предшествующими зна­ниями, и которые естественно включаются в после­дующие. Поэтому в дальнейшем, где только возможно, следует использовать понятие и свойства осевой симмет­рии и правила построения симметричных фигур при изу­чении новых геометрических образов и при решении до­ступных учащимся задач на построение.

Знание свойств симметричных относительно оси фи­гур позволяет рассматривать решение основных задач на построение с помощью циркуля и линейки до изучения признаков равенства треугольников и понятия геометри­ческого места точек. Сами построения являются для учащихся понятными и естественными.

Действительно, чтобы построить точку, симметричную относительно некоторой прямой данной точке А, не ле­жащей на этой прямой, построим две окружности, про­ходящие через точку А с центрами в произвольных точ­ках О1, и О2 данной прямой. Так как для окружностей данная прямая является осью симметрии, то вторая их общая точка А1 будет искомой точкой. Но этим самым мы решили и задачу: «Через точку А, не лежащую на данной прямой, пронести  перпендикуляр  к этой  прямой,

Аналогичным образом решается и задача о построе­нии оси симметрии двух данных точек; одновременно по­лучаем решение задачи о делении данного отрезка по­полам.

Так как биссектриса угла есть ось симметрии его сторон, то для построения ее достаточно найти на сторонах угла две точки, симметричные относительно искомой оси, каковыми будут точки, находящиеся на равных расстояниях от вершины угла, принадлежащей оси симметрии. В результате задача свелась к предыдущей с той лишь разницей, что достаточно найти одну точку оси, так как вторая точка – вершина угла – нам известна.

Этим же построением решается и задача о проведении к прямой перпендикуляра через данную на ней точку, так как искомый перпендикуляр по существу есть биссектриса развернутого угла с вершиной в данной точке.

Применение осевой симметрии значительно упро­щает и облегчает усвоение таких разделов темы «Окруж­ность», как свойство диаметра, перпендикулярного к хорде, свойство дуг, заключенных между параллельными хордами. Без большой затраты времени можно тщатель­но рассмотреть весьма важный для приложений вопрос о взаимном расположении окружностей, если обратить внимание учащихся на симметричность общих точек двух окружностей относительно их линии центров. Уча­щиеся смогут самостоятельно указать необходимые и до­статочные условия касания двух окружностей, что нуж­но при изучении соответствующих геометрических мест центров окружностей,  касающихся данной.

В VII-VIII  классах  метод осевой симметрии часто применяется вместе с другими методами.

Метод центральной симметрии.

1. В течение двух лет мы знакомили учащихся с цен­тральной симметрией примерно так, как в учебнике Н.Н. Никитина. Рассматривали построение и свойства точек, отрезков и треугольников, симметричных соответствующим данным фигурам относительно некоторой точки О. Затем рассматривали вопрос о центре симмет­рии параллелограмма, решая предварительно задачу: «Если в параллелограмме через точку О пересечения его диагоналей провести произвольную прямую, то отрезок прямой, заключенный между его сторонами, делится в точке О пополам». Получив соответствующий вывод о центре симметрии параллелограмма, вводим понятие центрально-симметричных фигур, подчеркивая, что каж­дой точке М фигуры, имеющей центр симметрии в точ­ке О, соответствует другая точка М1 этой же фигуры, отстоящая от О на такое же расстояние, как и точка М, и лежащая на прямой МО.

Решали такие задачи на построение с применением центральной  симметрии;

1) Построить треугольник по двум сторонам и ме­диане, проведенной к третьей стороне.

2) Дан угол и точка Р внутри него. Провести через эту точку прямую так, чтобы отрезок ее, заключен­ный между сторонами угла, делился в данной точке пополам.

У большинства учащихся не создавалось правильного представления о применении здесь центральной сим­метрии, они рассматривали эти решения, как решения задач дополнением искомых треугольников до паралле­лограммов.

Причины того, что это понятие оказалось трудным при таком изложении, следующие: во-первых, понятие центральной симметрии точек и фигур вводилось фор­мально, без активного участия учащихся в формирова­нии этого понятия; во-вторых, примеры задач на постро­ение для иллюстрации применения центральной симмет­рии подобраны неудачно; в-третьих, в курсе геометрии по установившейся традиции центральная симметрия не находит должного  применения.

2. Результаты оказались значительно лучшими, когда понятие центральной симметрии начали вводить так же, как и понятие осевой симметрии. Объяснение этого по­нятия сопровождалось показом соответствующих на­глядных пособий, а также изделий, для которых учащи­еся данного класса выполняли разметку, принимая точку пересечения базисных линий за центр симметрии и от­кладывая на одной и той же прямой по разные от этой точки  стороны равные отрезки.

Затем решаем задачи вида: «Построить точку (отре­зок, треугольник), симметричную данной точке (отрезку, треугольнику) относительно данного центра О», устанав­ливая одновременно равенство центрально-симметричных отрезков и треугольников. Чтобы учащиеся поняли, что любые центрально-симметричные фигуры равны, предлагаем им начертить произвольную прямолинейную фигуру и найти центрально-симметричную ей фигуру по отношению к некоторому центру. Поворачивая одну из них на 180о около центра О, учащиеся убеждаются, что эти фигуры совпадают. Затем, как и в прежнем вариан­те, вводим понятие центрально-симметричных фигур, рас­сматривая предварительно симметрию параллелограмма. Чтобы показать приложение центральной симметрии к решению задач на построение, подбираем задачи, для решения которых требуется применить действительно центральную симметрию, а не дополнение до параллело­грамма.

Метод параллельного переноса.

В средней школе умножение движений не рас­сматривается, и мы не можем вводить параллельный перенос как произведение двух отражений около парал­лельных осей, а вынуждены исходить из свойств парал­лелограммов.

Целесообразно с параллельным переносом знакомить учащихся в процессе решения задач па построение при изучении темы «Четырехугольники».

Имеются задачи вычислительного характера и на доказательство, требующие проведения прямых, парал­лельных боковой стороне трапеции, или в которых уже проведена такая прямая, например:

1)   В трапеции ABCD из вершины В проведена пря­мая, параллельная боковой стороне CD, до встречи в точке Е с большим основанием АD. Периметр треугольника АВЕ равен 1м, а длима ED равна 3дм. Определить периметр трапеции.

2)  Доказать, что в равнобедренной трапеции углы при основании равны. Для решения этой задачи учащиеся проводят прямую, параллельную боковой стороне, чтобы свести доказываемое предложение к свойству равнобед­ренного  треугольника.

Но перенос части фигуры, искусственно отделенной от других элементов, для учащихся более сложен, чем пере­нос всей фигуры. Поэтому можно было бы начинать с ре­шения задачи, требующей переноса окружности. В этих задачах очень простое построение, так как фактически нужно перемещать в заданном направлении на данное расстояние лишь одну точку – центр окружности. Но при таком решении учащиеся не видят, как перемещаются точки окружности, ибо допустимо вращение окружности около центра, а это может привести к неправильному пониманию параллельного переноса. Например, в изве­стном пособии И. И. Александрова первым примером на метол параллельного переноса является задача: «Между двумя окружностями провести отрезок ХУ, делящимся пополам в данной точке А». Приведенное там решение показывает, что вместо параллельного переноса окруж­ности фактически выполнено отражение от точки А, ко­торое можно в данном случае рассматривать как про­изведение параллельного переноса и поворота окруж­ности  вокруг своего центра на 180°.

Таким образом, при решении задач па построение мы применяем метод параллельного переноса, сущность ко­торого состоит в следующем: при анализе какую-нибудь фигуру подвергаем параллельному переносу на некото­рое расстояние в определенном направлении, в результа­те чего получаем вспомогательную фигуру, построение которой или очевидно, или не представляет затруднений. После этого производим обратный перенос и получаем искомую фигуру. Здесь же разъясняем, что параллель­ный перенос фигуры на некоторое расстояние означает, что все ее точки смещаются на одинаковое расстояние в определенном направлении. Следовательно, для опре­деления параллельного переноса нужно знать направ­ление и  величину переноса.

Параллельным перенос можно задать вектором переноса, которым одновременно определял бы и направле­ние и интервал данного переноса, но понятие вектора для семиклассников неизвестно, поэтому мы вынуждены выделять отдельно направление и величину переноса. В дальнейшем при решении всех задач па построение методом параллельного переноса требуем от учащихся указывать как направление переноса, так и расстояние, на которое перемещается каждая точка фигуры.

Метод подобия.

1. Понятие о подобии фигур в курсе геометрии VIII класса обычно иллюстрируется многочисленными примерами подобных фигур, встречающихся в быту, в науке и технике. Используется и имеющийся у учащихся опыт применения подобия при изготовлении планов и карт на уроках географии; при проведении мензульной съемки, если она была проведена до изучения этой темы; при выполнении рабочих чертежей на уроках черчения; при разметке деталей в школьных мастерских по черте­жам,  выполненным  в  некотором  масштабе.

Для лучшего усвоения метода подобия при изучении теоретического материала необходимо проводить подго­товительную работу, в частности, разъяснять, хотя бы в простейших случаях (треугольники, параллелограм­мы), условия, определяющие форму фигуры с точностью до подобия. Так как учащиеся должны уметь выполнять построения вспомогательных фигур, подобных искомым, то нужно повторить изученные ранее методы и приемы геометрических построений, в особенности, метод геомет­рических мест, что можно сделать при изучении пропор­циональности отрезков в связи с новым материалом.

Учащиеся, повторив материал, относящийся к методу геометрических мест, легче воспринимают метод подо­бия. При решении задач методом подобия, как и при ре­шении задач методом геометрических мест, отбрасываем одно из условий, в результате чего задача становится неопределенной. Ее решением при применении метода геометрических мест является бесконечное множество точек, удовлетворяющих оставшимся условиям, а в слу­чае метода подобия получаем бесконечное множество фигур, объединенных одним свойством; все они подобны искомой фигуре. Взяв одну из них, мы с помощью по­добного преобразования, учитывая ранее отброшенное условие, получаем искомую фигуру. Эта аналогия помо­гает  лучше  усвоить  метод  подобия.

2.  При изучении   понятия «центр   подобия» и при построении многоугольника, подобного данному, разъясняем уча­щимся, что соответственные точки всегда лежат на одной прямой, проходящей через центр подобия, а прямая, не проходящая через центр подобия, преобразуется в парал­лельную ей прямую. После того как учащиеся ознакомят­ся с построением многоугольника, подобного данному, разбираем сущность метода подобия, решая несложную задачу, в которой были бы ярко выражены характерные признаки этого метода. Например: «Построить треуголь­ник, знай два его угла А  и С и высоту hb».

Эту задачу можно решить различными способами, например методом параллельного переноса или методом геометрических мест. Разобрав предлагаемые   учащи­мися решения и повторив сущ­ность применяемых методов, указываем  на  возможность ре­шения еще одним способом: с применением подобия фигур.

Если не учитывать высоту искомого треугольника, то по двум данным углам мы можем построить бесконечное множество треугольников, но все они будут                          подобны искомому. Построим один из них, например треуголь­ник А1В1С1 (рис. 50).

Рис. 50

Чтобы выяснить, будет ли он искомым, проведем высоту BlD1 и сравним ее с данной высотой. В общем случае полученная высота не будет равна данной. Если, например, BlD1 меньше данной высоты в два раза, значит, и стороны треугольника нужно увеличить в два раза, ибо сходственные высоты в подобных треугольниках относятся как сходственные стороны. Если высота BlD1 больше данной в несколько раз, тогда нужно во столько же раз уменьшить и стороны треугольника. Следовательно, треугольник А1В1С1 нужно подобно преобразовать так, что­бы высота была равна данному отрезку hb, для чего до­статочно определить коэффициент подобия и выбрать центр подобия.   Коэффициент подобия   равен   отношению   данной высоты к настроенной высоте BlD1, то есть . За центр   подобия   выберем,   например,   точку B1, тогда очень легко построить точку, соответствующую точке D1, для чего достаточно отложить отрезок B1D = hв. Проведя пря­мую СА || С1А1, получим искомый треугольник АВ1С, который действительно удовлетворяет  всем условиям задачи.

Построения, выполняемые с применением транспор­тира и треугольника, просты, доказательство и исследо­вание элементарны, и все внимание учащихся концен­трируется на уяснении сущности нового для них способа решения  задач  на построение.

Повторяем решение задачи: не учитывая высоты, по данным углам построили треугольник, подобный иско­мому; учитывая затем заданную высоту, подобно пре­образовали построенный треугольник в искомый. Такой способ решения задачи называется методом подобия. Этим методом можно решать лишь такие задачи па по­строение, условия которых можно разбить на две части, одна из которых определяет фигуру с точностью до по­добия (два утла треугольника), а вторая часть условия определяет  размеры   фигуры   (высота).

Таким образом, метод подобия при решении задач на построение состоит в следующем; отбросив условие, определяющее размеры фигуры, по оставшимся усло­виям строим фигуру, подобную искомой; учитывая затем ранее отброшенное условие, подобно преобразовываем построенную фигуру в искомую.

Алгебраический метод.

1. Одним из важных методов, применяемых в школь­ном курсе геометрии, является алгебраический метод ре­шения задач на построение. Уже в VI-VII классах уча­щиеся неоднократно применяли алгебру при решении задач вычислительного характера и задач на доказатель­ство с целью упрощения решения. Алгебра дает очень удобный и хороший способ решения геометрических вопросов аналитическим путем.

В VI классе целесообразно рассказать, что некоторые сведения по алгебре были известны еще в глубокой древ­ности, но вопросы алгебры не отделя­лись от вопросов арифметики и геоме­трии. Позже греческие ученые, такие, как Пифагор, Евклид, которые занима­лись преимущественно геометрией, по­лучили значительные результаты и в алгебре. Но многие алгебраические то­ждества доказывались ими геометри­чески. На доске в качестве примера ил­люстрируем доказательство тождества: (a + b)2 = a2 + 2ab + b2   (рис. 56).

Рис. 56

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15