бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Методы химического анализа бесплатно рефераты

Нулевая линия -- часть хроматограммы, полученная при регистрации сигнала детектора во время выхода из колонки чистой подвижной фазы. Существуют другие параметры хроматограммы

С tR2

tR1

ДtR2,1

h

3 4

tR0

2 1

м м 0,5

V

1 -- нулевая линия; 2 -- пик несорбируемости компонента; 3, 4 -- пики определяемых компонентов.

Высота выходной кривой -- высота пика h -- перпендикуляр из максимума пика на нулевую линию.

Ширина пика м -- отрезок отсекаемый на нулевой касательной к кривой в точке перегиба (или на половине высоты -- м0,5).

tR -- промежуток времени от момента ввода пробы до достижения max h на пике.

Расшифровка хроматограммы.

Расшифровка хроматограммы сводится к определению высоты и ширины пика, если пик узкий, то определяют только высоту пика. Высота пика определяется как высота перпендикуляра, проходящего через max точку пика на нулевую точку пика, если пик пологий, то высоту проводят из точки пересечения касательных. Для широких пиков определяется не только высота, но и ширина, т.к. устанавливается зависимость между концентрацией компонента и высотой и площадью пика.

h h

1/2h h

a a

h = fC S = fC S = h · Ѕ a -- основание

Ширина пика находится как ширина основания треугольника, полученного при пересечении двух касательных с нулевой линией. (иногда используют 1/2h).

Хроматографический метод анализа можно использовать как для качественного, так и для количественного анализа.

1) В качественном анализе используют несколько методик расшифровки хроматограмм.

а) качественный анализ по времени удержания Rуд. (фуд.)

Rуд. (фуд.) -- время удержания - это промежуток времени от момента ввода пробы до выхода max на хроматограмме, оно зависит от условий хроматографирования, от природы анализируемого компонента. Метод заключается в том, что отмечают фуд. эталонной смеси, затем исследуемой. При сравнении судят о составе смеси.

б) качественный анализ по форме хроматограмм.

Вначале получают хроматограмму исследуемой смеси, затем вводят в анализируемую смесь предполагаемое вещество.

Если введённое вещество в смеси есть, то увеличивается величина соответствующего пика, если отсутствует -- появляется дополнительный пик.

а) б) в)

Хроматограмма в-ва нет есть

(первичная)

Если в анализируемую смесь, имеющую хроматограмму (а) ввести этиловый спирт и прохроматографировать, то может быть два новых вида хроматограмм.

(б) -- говорит об отсутствии этилового спирта

(в) -- говорит о присутствии этилового спирта

в) табличный качественный анализ с применением хроматографирования исследуемого и введённого эталонного раствора.

На основании полученных хроматограмм рассчитывают относительно удерживаемые объёмы по времени удержания и сравнивают с табличными данными и по ним проводят идентификацию:

Vотн. = (фуд.иссп. - ф0) / (фуд.эт. - ф0)

Где: фуд.иссп -- время удержания исследуемой смеси

фуд.эт -- время удержания эталона

ф0 -- время удержания газа-носителя

Иногда используют не время удержания, а расстояние в мм (i) от момента вкалывания пробы до появления max пика.

Vотн. = (iуд.иссп. - ф0) / (iуд.эт. - ф0)

2) Количественный анализ основан на методиках, учитывающих изменение различных параметров пика, зависящих от концентрации анализируемых компонентов -- h, a, S и VR или hVR.

а) Метод нормировки -- сумму параметров пиков (h, S) принимают за 100 % и массовая доля находится как отношение h и S отдельных пиков к этой сумме (х100)

% = · 100 % = · 100

б) Метод абсолютной калибровки -- наиболее точен. В нём экспериментально определяют зависимость h или S от концентрации и строят калибровочные графики по стандартным растворам, а потом хроматографируют смесь и по высоте полученных пиков определяют С.

Если тщательно готовить стандарт смеси и выдерживать условия хроматографирования, метод отличается высокой точностью.

в) Метод внутреннего стандарта основан на введении в анализируемую смесь точно известного количества стандарта, близкого по физическим свойствам к компонентам смеси. Смесь хроматографируют, определяют h и S.

% = · 100

Дать пример расчёта на метод нормировки и внутреннего стандарта.

Примеры расчётов.

1. При хроматографировании смеси компонентов, расшифровка хроматограммы дала следующие данные:

h

a1/2

k

S

Siki

Пропан

110

9

1,13

990

1118,7

Пентан

71

10

1,11

710

788,1

Бутан

22

7

1,11

154

170,94

Определить %-ное содержание компонентов в смеси, используя метод нормировки.

2. Вычислить % толуола в пробе по методу внутреннего стандарта, если данные хроматографирования:

(в качестве внутреннего стандарта - бензол)

3. При определении бутилового спирта методом газовой хроматографии были получены следующие пики в зависимости от содержания, используя калибровочный график:

С, мг

0,2

0,4

0,6

0,8

1

h, мм

18

37

48

66

83

Для 0,02 мл исследуемого раствора получили пик h = 57 мм.

Определить %-ное содержание спирта, если с = 0,91 г/мл

3). Методы идентификации в газовой хроматографии.

В газовой хроматографии параметры удерживания какого-либо соединения в смеси при определённых условиях характеризуют природу этого соединения, поэтому они (параметры удерживания) могут быть использованы для целей идентификации.

В качестве параметров для идентификации чаще всего используют время удерживания tR, удерживаемый объём VR, логарифмический индекс удерживания J.

В практике качественного газохроматографического анализа используют следующие способы идентификации компонентов:

1. Сравнение параметров удерживания неизвестного вещества и эталонного соединения при идентичных условиях хроматографирования.

2. Применение графических или аналитических зависимостей между характеристиками удерживания и физико-химическими свойствами веществ (молекулярной массой, tкип., числом углеродных атомов или функциональных групп и т.д.).

3. Сочетание газовой хроматографии с другими инструментальными методами (ИК-спектроскопией и др.).

4. Применение селективных детекторов.

4). Практическое применение.

Большое значение газовой хроматографии в практике вызвано тем, что с её помощью можно идентифицировать отдельные компоненты сложных газовых смесей и определить их количество. Метод является универсальным и не требует больших затрат времени.

Этим методом анализируют нефтяные и рудничные газы, воздух, продукцию основной химии и промышленности органического синтеза, нефть и продукты её переработки, производят разделение изотопов некоторых изотопов. Хроматография широко используется в биологии и медицине, в технологии переработки древесины, в лесохимии, пищевой промышленности и многих других.

Методы газовой хроматографии в физико-химических исследованиях, для анализа сложных многокомпонентных систем, определение микропримесей, а также для определения защитных свойств противогазных коробок и фильтр-поглощающих элементов.

5.1.3 Газовая хроматография (ГХ). Её виды

Подвижная фаза -- газ или пар (газ-носитель).

В зависимости от состояния неподвижной фазы различают газо-адсорбционную (ГХ) и газо-жидкостную (ГЖХ) хроматографию.

В ГХ -- неподвижной фазой является твёрдый адсорбент.

В ГЖХ -- неподвижной фазой является жидкость, плёнка жидкости на поверхности частиц твёрдого сорбента.

Газовая хроматография основана на различной сорбируемости компонентов смеси, применима для анализа смеси газов, легколетучих жидкостей и некоторых твёрдых веществ, способных переходить в паро- или газообразное состояние.

В качестве газа-носителя используют инертные газы -- Не, Ne, Ar, а также N2, H2, CO2 и др. Скорость газа-носителя поддерживают постоянной.

Требования к газу-носителю:

Должен быть инертен по отношению к определяемым компонентам.

Должен быть химически чистым.

Быть дешёвым и легкодоступным.

Подходить к детектору.

В ГХ колонки заполняются твёрдым сорбентом. В качестве сорбентов может применяться активированный уголь, графит, силикагель, оксид алюминия, цеолиты и т.д.

Активированные угли неполярны, обладают высокой удельной поверхностью 1000-1700 м2/г, что обуславливает большую силу взаимодействия с анализируемым веществом.

Силикагель и оксид алюминия -- полярные адсорбенты, на их поверхности имеются заряды.

Применяемые в качестве сорбента цеолиты, являются алюмосиликатами щелочных металлов. Их можно рассматривать как молекулярные сита, т.к. их поры имеют размеры, близкие к размерам молекул и адсорбция на них является своеобразным “просеиванием”, сорбируются, в основном, вещества, молекулы которых могут проникать внутрь кристаллической решётки.

Сравнительно недавно начали использовать полимерные сорбенты на основе сополимеров стирола, этилстирола, дивинилбензола и др.

Требования к сорбенту:

Должен быть однородным.

Должен иметь большую поверхность.

Не должен взаимодействовать ни с компонентами смеси, ни с газом-носителем.

Обладать активностью.

Не иметь каталитических свойств.

При проведении работ по методу газовой хроматографии в колонке происходит процесс адсорбции газа на твёрдом адсорбенте, при использовании газожидкостной хроматографии вместо процесса адсорбции -- стал происходить процесс растворения газа в тонкой плёнке, находящейся на твёрдом носителе и эффективность разделения стала определяться не процессами адсорбции -- десорбции газа, как это происходит в адсорбционной газовой хроматографии, а процессами растворения газа в жидкой плёнке и его выделения.

Дозаторы -- устройства, предназначенные для ввода пробы. Проба может быть введена непосредственно в поток газа-носителя или в специальный дозирующий объём.

Небольшие количества вводят с помощью специальных микрошприцев (или медицинских). Большие по объёму пробы вводят с помощью газовых пипеток, твёрдые пробы растворяют и вводят в виде раствора с помощью микрошприца.

Принципиальная схема газового хроматографа

4

5

2 3 10

1

6

1. Баллон с газом-носителем Р = 100 атм.

2. Редуктор

3. Ротаметр, для измерения объёма газа (расход)

4. Осушительная колонка

5. Испаритель - дозирующее устройство 8 7

6. Хроматографическая колонка

7. Детектор

8. Регистратор - самописец

9. Конденсационные ловушки 9

10. Термостат

Подвижная фаза в виде газа-носителя непрерывно подаётся из баллона, анализируемая проба с помощью микрошприца вводится в испаритель в поток газа-носителя и попадает в хроматографическую колонку - 6. Объём вводимой пробы от 0,0001 - 0,1 мл.

Колонка может быть прямая, V или W-образная, в форме спирали; может быть стеклянная, металлическая, пластмассовая.

Длина колонки 1-100 м ш 3-50 мм.

Для аналитических целей ? = 1,5-2,0 м ш 0,25-50 мм.

Чем меньше диаметр колонки, тем выше эффективность.

Металлические колонки прочнее, но плохо видно как идёт заполнение адсорбента, стеклянные -- видно адсорбент, но хрупкие.

В колонке идёт основной процесс -- процесс адсорбции газа на твёрдом адсорбенте, в газожидкостной хроматографии -- процесс растворения газа в тонкой плёнке.

Детекторы -- преобразуют информацию о составе газа выходящего из колонки в электрический или пневматический импульс. Существуют интегральные и дифференциальные детекторы.

Дифференциальные -- отражают мгновенное изменение измеряемой величины, а интегральные -- суммируют это значение за определённый промежуток времени.

Чаще применяют дифференциальные детекторы, основанные на применении теплопроводности газа (ДТП) или пламенно-ионизационные (ДИП).

Принцип ДТП -- катарометра основан на изменении электрического сопротивления проводника в зависимости от теплопроводности. Измерительная схема моста по принципу моста сопротивления, плечи этого моста - металлические нити, сопротивление которых зависит от температуры, одна нить -- в рабочей ячейке А, а вторая -- в ячейке сравнения В и нагреваются постоянным током. Если через обе ячейки идёт одинаковый по составу газ, то теплоотдача одинаковая, одинаковая температура, одинаково сопротивление и сигнал равен 0, уравновешен. При изменении состава одного из потоков - характер теплоотдачи меняется, меняется температура, сопротивление и сигнал отличен от 0.

Работа ДИП основана на измерении электропроводности водородного пламени, в котором сжигают анализируемую газовую смесь. Когда горит чистый водород -- ионов не образуется и электропроводность ничтожна. При сжигании пробы образуются ионы и электропроводность увеличивается.

5.1.4 Жидкостная хроматография

Среди хроматографических методов анализа наиболее разработанным является газовая хроматография, однако при некоторых анализах этот метод малоэффективен (малолетучих, химически и термически нестойких, высокореакционноспособных и др. веществ), поэтому целесообразнее применять жидкостную хроматографию.

Жидкостная хроматография основана на взаимодействии, возникающем при движении жидкой фазы сквозь неподвижный слой сорбента, обладающего большой суммарной поверхностью.

Особенностью хроматографического метода является распределение компонентов разделяемой смеси между фазами, одна из которых неподвижная большая поверхность, а другая -- поток, фильтрующийся через неподвижный слой, в жидкостной хроматографии этот поток -- жидкость (подвижная фаза).

Во всех случаях, когда подвижная фаза является жидкостью, мы имеем дело с жидкостной хроматографией, независимо от того, в каком состоянии находится неподвижная фаза.

Жидкостная хроматография получает всё большее развитие и применение с внедрением новых селективных адсорбентов на основе полимеров и становится высокочувствительным методом анализа многокомпонентных смесей в растворах.

В качестве хроматографической колонки в аналитической практике используют бюретки, делительные воронки.

Через колонку, заполненную адсорбентом, пропускают анализируемую смесь, состоящую из компонентов пробы и растворителя.

Эти компоненты будут распределяться на адсорбенте в зависимости от адсорбционной способности. В первую очередь (вверху колонки) будет адсорбироваться компонент с наибольшей адсорбционной способностью. Далее вниз по колонке растворяются компоненты по мере уменьшения адсорбционности. Например, имеются компоненты А и В в растворителе (Г-адсорбционная способность)

(Г) - ГА больше ГВ

Для более чёткого разделения зон через колонку пропускают дополнительные порции растворителя, промывают растворителем.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15