бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Метрология и метрологическое обеспечение бесплатно рефераты

Характеристики погрешности выражают числом, содержащим не более двух значащих цифр: если число начинается с цифр 1 или 2, то в нем оставляют две значащих цифры с округлением в большую сторону, если число ?3, оно округляется до одной значащей цифры по общим правилам округления. Пример - ряд числовых значений классов точности.

Результат измерения округляется до того же десятичного знака, которым оканчивается округленное значение абсолютной погрешности измерения. Округление проводится только в окончательной записи.

5. Методики выполнения измерений. Выбор средств измерений

Методика выполнения измерений - совокупность операций и правил, выполнение которых обеспечивает получение результатов измерений с установленной погрешностью (неопределенностью). Следует различать МВИ как приведенное выше понятие, и МВИ как отдельный документ, содержащий описание и все необходимые данные для реализации МВИ. Общие положения и требования к их разработке и метрологической аттестации установлены в ГОСТ Р 8.563-96 «ГСИ. Методики выполнения измерений».

Документ на МВИ должен содержать разделы:

- вводную часть (назначение и область применения МВИ);

- характеристики погрешности измерений;

- средства измерений, вспомогательные устройства и др.;

- метод измерений;

- требования безопасности и охраны окружающей среды;

- требования к квалификации оператора;

- условия измерений;

- подготовка к выполнению измерений;

- выполнение измерений;

- обработка результатов измерений;

- контроль погрешности результатов измерений;

- оформление результатов измерений.

Важнейшим этапом в разработке МВИ является выбор методов и средств измерений, который осуществляется в соответствии с рекомендацией МИ 1967-89. При этом целью и основным критерием выбора является достижение заданной или минимально возможной погрешности измерений.

Погрешность результата измерений как при априорной оценке (при разработке МВИ), так и на этапе обработки результатов измерений определяют расчетным объединением характеристик всех составляющих, образующих результирующую погрешность. Поэтому важно определить единые правила суммирования составляющих.

При оценке результирующей погрешности СИ или результата измерений следует предполагать наличие как систематических, так и случайных составляющих, поэтому

Д У = ?СУ + ?єУ.

Общая формула для СКО суммы случайных составляющих

уУ =

где сij -коэффициент корреляции между составляющими случайной погрешности. Если составляющие независимы или корреляционная связь слабая (|сij|<0,7), принимается сij = 0 и уУ =. Если между случайными составляющими имеется заметная корреляция, принимается сij=1 и используется арифметическое суммирование уУ =. Коррелированными являются погрешности, которые вызваны одной общей причиной.

Интервальная характеристика случайной погрешности результата измерений, то есть границы, в пределах которых случайная погрешность измерений находится с заданной вероятностью, определяется выражением ?єУ = tpуУ, где tp - коэффициент Стьюдента, зависящий от доверительной вероятности Рд оценки границ значений погрешности. Значения коэффициента Стьюдента можно принять 1,6 для Рд = 0,9 и 2,0 для Рд = 0,95.

Для суммирования элементарных систематических погрешностей используется несколько способов. Арифметическое суммирование предельных значений систематических составляющих дает гарантированную оценку «сверху». Такая оценка завышена и возникновение таких погрешностей на практике маловероятно. Арифметическое суммирование применяется только для составляющих с точно известными значениями и знаками, которые могут быть использованы в виде поправок к результату измерений и исключены из оценки погрешности. Для неисключенных систематических составляющих применяют рандомизацию, то есть их перевод в разряд случайных величин с равномерным законом распределения.

Тогда, если известны пределы ±?Сi систематических составляющих погрешности, интервальная характеристика погрешности ДСУ = К. Значение К при геометрическом суммировании пределов неисключенных систематических составляющих принимают К = 0,95 для Рд = 0,9, К = 1,1 для Рд = 0,95, К = 1,4 для Рд = 0,99, но можно без больших потерь для точности расчетов принимать и К = 1.

В случае суммирования неисключенных систематических и случайных составляющих целесообразно определить дисперсии неисключенных систематических погрешностей и далее выполнить геометрическое суммирование по формуле

уУ =.

Дисперсия случайной величины с равномерным законом распределения уiІ = ДІСi/3, если заданы симметричные предельные значения величины ±?Сi, или уiІ = НІi/12, если известен размах значений этой величины (например, Н - цена деления шкалы прибора).

Пример 1. Определить погрешность вольтметра с пределом измерений 1,5 В при измерении падения напряжения 0,8 В на участке цепи с активным сопротивлением R = 4 Ом при температуре от 15 до 35 °С. Для вольтметра нормированы м.х. по ГОСТ 8.009-84: предел систематической составляющей основной погрешности гс = ±0,4%; СКО случайной составляющей у(?є) = 0,2%; предел допускаемой вариации Н = 0,4%; номинальная функция влияния температуры Ш(t) = +0,03%/°С; входное сопротивление вольтметра 1000 Ом. Нормальное значение температуры tну = 20°С.

Инструментальная погрешность измерения, обусловленная погрешностью вольтметра, будет складываться из трех составляющих: основной погрешности вольтметра, дополнительной погрешности в диапазоне изменений температуры, погрешности согласования сопротивлений вольтметра и объекта измерений.

Основную погрешность определим как сумму систематической, случайной составляющих и вариации, применив принцип рандомизации к составляющим систематической погрешности и вариации. Тогда дисперсия основной погрешности составит значение

уоІ = гсІ/3+ уІ(?є)+НІ/12 = 0,16/3+0,04+0,16/12 ? 0,106 (%)І

Дополнительную погрешность рандомизируем, приняв равновероятный закон распределения температуры в заданном интервале. Тогда математическое ожидание дополнительной погрешности М(?t) = Ш(t)[М(t) - tну] = 0,03[(35+15)/2 - 20] = +0,15%.

Дисперсия дополнительной погрешности

D(?t) = ШІ(t) уІ(t) = 0,03І·(35-15)І/12 = 0,03 (%)І

Погрешность согласования определим из формулы, определяющей показание вольтметра Uv = UxRv/(R+Rv): ДR = Uv-Uх = - UхR/(R+Rv), или отнесенную к Uх: дR = - (4/1004)100 = - 0,4%. Это значение можно использовать для расчета поправки к результату измерений или просуммировать с другими составляющими, приведя их тоже в форму относительной погрешности.

д = дR+[М(?t)±tp]Uк/Uх = -0,4+[0,15±1,6]1,5/0,8 = -0,4+[0,15±1,6·0,369]1,875 = -0,4+0,281±1,107 = -0,119±1,107-1,2% ? д ? 1,0%, Рд = 0,9

Пример 2. Выбрать метод и средство измерений для измерения падения напряжения 0,8…1,2 В на участке цепи с активным сопротивлением R = 4 Ом при температуре от 15 до 35 °С с погрешностью д не более 1,5 %.

1. Выбираем метод измерений - прямые измерения с использованием вольтметра с пределом измерений 1,5 В. Полагаем методическую и личную погрешности пренебрежимо малыми.

2. Ориентировочно определяем необходимый класс точности вольтметра гтр ? дХн/Хк = 1,5·0,8/1,5 = 0,8 и выбираем вольтметр класса точности 0,5.

Класс точности определяет основную приведенную погрешность го= ±0,5%. Пусть для этого вольтметра дополнительная температурная погрешность нормируется в виде гt = 0,6го/10єС.

Предельное значение дополнительная погрешность будет иметь при температуре 35єС: гt = ±0,6·0,5(35-20)/10 = ±0,45%.

Погрешность согласования при Rv = 1000 Ом составит дR = - (4/1004)100 = - 0,4%.

3. Оценим погрешность результата измерений для Хн = 0,8 В (в этой точке заданного диапазона измерений она будет максимальной) с Рд = 0,9:

д = дR±[tp]Хк/Хн = -0,4±[1,6]1,5/0,8 = -0,4±1,164

В итоге получим -1,6? д ?0,8, то есть требование д ? ±1,5 % не выполнено. Вольтметр класса точности 0,5 может быть использован только при введении поправок Д = 0.004Х в результаты измерений. В этом случае д = ±1,2%.

Если класс точности вольтметра, то есть нормирована относительная погрешность до = 0,5 %, которая имеет место для любого значения в заданном диапазоне измерений, в выражении суммирования погрешностей исключается множитель Хк/Хн. Тогда д = ±0,62 ? 0,6%

Рассмотрим случай нормирования класса точности двучленным выражением, например 0,5/0,2. В этом случае до = 0,5+0,2[(Хк/ Х)-1]. Для Х = 0,8В до= 0,5+0,2[(1,5/0,8)-1] = 0,675%. Дополнительная погрешность дt = 0,6·0,675(35-20)/10 = ±0,61%. Тогда после введения поправок

Д = ±1,6 = ±0,838 ? 0,9%.

Другой способ суммирования неисключенных систематических погрешностей (суммирования пределов относительных погрешностей) дает значение погрешности измерений

д = ±К = ± 0,95= ±0,864 ? 0,9%.

6. Обработка результатов многократных и косвенных измерений

Качество измерений характеризуются рядом показателей.

Сходимость результатов измерений - близость друг к другу результатов измерений, выполненных повторно в тех же условиях.

Воспроизводимость результатов измерений - близость результатов измерений одной и той же величины, полученных в разное время, в разных местах, разными операторами и средствами.

Точность измерений - близость результата измерений к истинному значению измеряемой величины.

Правильность измерений - близость к нулю систематической погрешности измерений.

Достоверность измерений - близость к нулю случайной или отнесенной к случайной неисключенной систематической погрешности. Достоверность измерений характеризуется доверительной вероятностью того, что истинное значение лежит в указанных доверительных границах:

Рд = Р{(х - tу) ? Х ? (х + tу)}.

Возможность повышения достоверности результатов измерений обеспечивается при проведении многократных измерений. Результат многократных измерений определяется как параметр положения центра распределения полученных данных (Хц). Преимущество и основной смысл многократных измерений заключается в том, что координата центра распределения совокупности результатов измерений одного и того же значения физической величины имеет меньшую полосу неопределенности, чем каждый отдельно взятый результат однократного измерения. Существуют соотношения: D(Хц) = D(хi)/n и у(Хц) = у(хi)/, где n - число измерений.

Последовательность обработки результатов многократных измерений следующая:

- исправление результатов наблюдений, если это возможно (внесение поправок);

- вычисление оценки параметра положения центра выборки Хц (среднее арифметическое, медиана или другая оценка);

- вычисление выборочного СКО оценки параметра положения центра по формуле

у(Хц) =

- определение границ доверительного интервала для случайной погрешности

?сл= ±tpnу(Хц).

Следует помнить, что при многократных измерениях уменьшаются только случайные погрешности, а систематические остаются без изменения и должны суммироваться со случайными. Следующие этапы обработки данных:

- сравнение ?сл с неисключенными систематическими составляющими погрешности измерений и выявление значимых составляющих;

- суммирование неисключенных систематических погрешностей

Д СУ = К

- определение суммарной погрешности Д У =.

Результат измерений записывается в виде Хц± Д У, Рд.

Пример. При многократном измерении тока получены значения в мА: 98, 100, 97, 101, 99, 102, 103. Определить доверительные границы для истинного значения измеряемой величины с вероятностью Р = 0,95 (tp= 2,45).

Параметр положения центра выборки Хц (среднее арифметическое) Хц =100 мА.

СКО оценки параметра положения центра

у(Хц) = =

Границы доверительного интервала для случайной погрешности

?сл= ±tpу(Хц) = ±(2,45•0,816) ? ±2 мА.

Результат измерений: 100±2 мА, Р = 0,95.

Результат косвенного измерения определяется расчетом по известной функции Ж = f(х1, х2, …) и измеренным значениям аргументов хi. Так как каждое значение хi измерено с погрешностью, задача расчета погрешности результата измерений сводится также к суммированию погрешностей измерения аргументов. Отличие косвенных измерений состоит в том, что в зависимости от вида функции вклад отдельных аргументов в результат и его погрешность может быть различным. Поэтому при расчете погрешности результата косвенных измерений вводятся коэффициенты влияния аргументов на результат измерений, представляющие собой частные производные функции по соответствующим аргументам:

Д(Ж) =(?f/?хi)Д(хi).

Для дисперсий:

уІ(Ж) = (?f/?хi)І уІ(хi).

Метод частных производных правомерен для суммирования абсолютных погрешностей линейных функций, в которые аргументы входят в первой степени и коэффициенты влияния ?f/?хi не зависят от аргументов. Для нелинейных функций проводится сначала логарифмирование (или другая операция линеаризации функции, в общем случае - разложение в ряд Тейлора), затем дифференцирование.

Пусть Ж = ?( хЄ1, х?2, …).

Логарифмирование: lnЖ = alnх1 +nlnх2, …

Дифференцирование: dЖ/Ж = a(dх1/х1) + n(dх2/х2) +…, после чего, перейдя к малым приращениям (погрешностям), получим формулу расчета относительных погрешностей: д(Ж) = a д(х1) + n д(х2) +…

Для дисперсий: уІ( д Ж) = bjІ уІ( дхj).

Итак, расчет погрешности косвенного измерения проводится в два этапа: 1) вывод формулы для расчета абсолютной погрешности (дифференцирование) или относительной погрешности (логарифмирование + дифференцирование) в зависимости от вида функции связи измеряемых величин; 2)расчет погрешности в соответствии с полученной формулой по правилам суммирования составляющих. При этом, если составляющие погрешности рассматриваются как случайные величины, знаки, полученные при дифференцировании, не учитываются.

Пример. Оценить значение и погрешность измерения мощности, поглощаемой на сопротивлении R = 100 Ом при напряжении U = 10 В. СКО относительных погрешностей измерений напряжения и сопротивления составляют: у(дU) = 0,5%, у(дR) = 1%.

Поглощаемая мощность W = UІ/ R = 1Вт.

Для оценки погрешности измерения проведем линеаризацию функции:

lnW = 2lnU- lnR.

Тогда относительная погрешность измерения мощности дW = 2дU+дR, а дисперсия относительной погрешности: уІ(дW) = 4 уІ (дU)+уІ (дR)

СКО относительной погрешности у(дW) = ? 1,414%

Приняв доверительную вероятность Р=0,9 (tp=1,6), запишем результат измерений:

W = 1 Вт; д = ±2,3%, Р = 0,9.

7. Метрологическое обеспечение. Закон «Об обеспечении единства измерений». Структура и функции метрологических служб

Обеспечение единства измерений - деятельность метрологических служб, направленная на достижение и поддержание единства измерений в соответствии с законодательными актами, правилами и нормами, установленными национальными стандартами и другими нормативными документами по обеспечению единства измерений.

Содержание метрологической деятельности более полно раскрывает понятие метрологическое обеспечение - установление и применение научных и организационных основ, технических средств, правил и норм для достижения единства и требуемой точности измерений.

Метрологическое обеспечение

Научная основа

Теоретическая и прикладная метрология

Организационная основа

Государственная метрологическая служба, метрологические службы федеральных органов исполнительной власти и юридических лиц

Нормативно-правовая основа

Закон «Об обеспечении единства измерений», Постановления Правительства, нормативные документы ГСИ (Государственной системы обеспечения единства измерений)

Техническая основа

Государственные эталоны, системы передачи размеров единиц величин (поверочные схемы), парк рабочих средств измерений

Государственное регулирование метрологической деятельности осуществляется на основе закона «Об обеспечении единства измерений», впервые принятого в 1993 и в новой редакции - в 2008 году (Федеральный Закон от 26.06.2008 №102-ФЗ). В законе определены формы государственного регулирования, требования, порядок и правила практически по всем вопросам метрологической деятельности и основам метрологического обеспечения.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10