бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Испытательная станция турбовинтовых двигателей ТВ3–117 ВМА–СБМ1 серийного производства бесплатно рефераты

Исследования работы глушителя выхлопа показали изменение эффективности глушителя при постоянной активной длине звукопоглотителей, но при измененных сечениях и скоростях газовоздушного потока. Было установлено, что генерация шума сказывается тем раньше, чем меньше исходная звуковая мощность, чем больше величина удельной генерации (генерация на единицу длины глушителя) и затухания звука в глушителе. В результате вторичной генерации шума в глушителе эффективность в ряде случаев не может быть полностью реализована, и она почти перестает возрастать при увеличении длины активной части звукопоглотителя.

Эти вопросы теоретически еще недостаточно изучены и на практике приходится принимать эффективность глушителей выхлопа, основываясь на результатах экспериментальных исследовании.

В практической работе для перечисленных глушителей скорость газовоздушного потока принимают до 40 м/с с последующей проверкой влияния скорости газа на шумообразование в глушителе.

Следующим этапом расчета является определение геометрических размеров глушителя. Для этого определяют количество воздуха, которое необходимо подмешать к струе, чтобы охладить ее до допустимых значений. Сначала рассчитывают коэффициент эжекции:

Где -- температура газовой струи, °К;

- допустимая температура газовоздушной смеси, °К;

Общее количество газовоздушной смеси в м3/с oпределяют по формуле:

где -- расход воздуха через двигатель, кг;

- плотность газа при , кг/м3

Необходимое проходное сечение глушителя определяют из соотношения

Далее, в результате гидравлического расчета, определяют скорость газовоздушного потока в глушителе, при которой обеспечивается принятый коэффициент эжекции n. По ней выбирают в первом приближении тот или иной тип глушителя.

Если эта скорость не превышает 20--25 м/с, то на этом расчет можно закончить.

Глушители со стороны всасывания

Эффективность глушителей со стороны всасывания, где скорость потока обычно не бывает больше 25 м/с, определяют без учета влияния скорости воздушного потока. Для газодинамических установок, каналы всасывания
которых имеют сечения от нескольких до многих десятков квадратных метров, применяют пластинчатые глушители, по форме подобные глушителям вентиляционных систем. Их эффективность обычно определяют
экспериментально.

При определении затухания в глушителях больше длины (6--8 м) было установлено, что из-за наличия обходных путей распространения шума (монтажные зазоры, стенки глушителей) практически нельзя получить величину затухания более 70--75 дБ. Особенно сильно влияют на снижение эффективности зазоры между торцами звукопоглощающих щитов и стенками канала. Когда такие зазоры имеют величину, измеряемую несколькими сантиметрами, эффективность может снижаться на 10--15 дБ в широком диапазоне частот.

Увеличение скорости воздуха на стороне всасывании свыше 25 м/с приводит обычно к значительному разрежению в боксе, искажению параметров испытуемых объектов и увеличению нагрузки на ограждающие конструкции, что нежелательно. Наиболее целесообразная скорость для установок, излучающих шум в атмосферу 10--15 м/с.

Форма и тип глушителей, устанавливаемых на стороне всасывания газодинамических установок, зависит в первую очередь от величины расхода воздуха. Если для работы установки требуется 1--2 кг воздуха в секунду, то его можно подавать через каналы вентиляционных систем, где и предусматриваются соответствующие глушители шума. При расходе воздуха 3--10 кг/с его можно подавать через специально установленные вентиляционные глушители. При расходе воздуха свыше 10--12 кг/с испытательные боксы снабжают специальным всасывающим каналом (шахтой).

Для уменьшения шума, излучаемого в атмосферу палом всасывания, используют различные звукопоглощающие конструкции.

Для шахт испытательных боксов и других газодинамических установок применяют щиты.

Широко применяют щиты, каркас которых изготовляют из дюралюминиевых профилей, обшитых снаружи перфорированными алюминиевыми листами. В качестве звукопоглощающего материала в них используют базальтовое или стеклянное супертонкое волокно в оболочке из стеклоткани, плотность заполнения составляет 20-25 кг/м3.

Щиты расчаливают за крюки проволокой к стенам
шахты. Размеры щита увязывают с размерами шахты. Одни из возможных размеров щита -- 200X200X 2000мм.

В больших каналах щиты устанавливают один на другой и при помощи распорок соединяют между собой. Такую конструкцию применяют для заглушения боксов, в которых испытывают турбовинтовые и поршневые двигатели и каналы всасывания газотурбинных установок.

Боксы газодинамических установок.

В таких боксах размещают установки для испытания камер сгорания, сопловых аппаратов и других струйных агрегатов, транспортных газотурбинных двигателей, имеющих расход воздуха до 15--20 кг/с. Звуковая мощность этих установок меньше, чем например, реактивного двигателя, однако, если не принять мер по заглушению, то на расстоянии нескольких десятков, а иногда и сотен метров шум от них будет превышать допускаемые санитарными нормами величины.

Наиболее надежным методом устранения шума газодинамических установок является размещение их в боксах, подобных тем, в которых испытывают полноразмерные реактивные двигатели. Геометрические размеры боксов определяются габаритами испытываемых изделий, транспортных средств и заданными условиями испытаний. Условиями испытания предусматривается забор воздуха из бокса и выхлоп в глушитель через эжекторную трубу.

Воздух поступает в бокс через всасывающий канал, где установлены звукопоглощающие щиты. При определении скорости воздуха между щитами необходимо учитывать его расход не только через двигатель, но и эжекцию газовой струи. На каждые два бокса делается кабина наблюдения и дистанционного управления с окнами и дверями повышенной звукоизоляции. Бокс оборудуют также выхлопным глушителем.

8.2 Снижение шума газовой струи воздействием на процесс шумообразования

Образование шума газовой струи происходит на ограниченной длине, причем шум различных частот образуется на разных участках струи. Эту особенность используют для изменения характера шума или для его уменьшения в глушителях.

Другим способом воздействия на процесс шумообразовывания является применение преобразователей шума в виде сеток или перфорированных преград, устанавливаемых непосредственно за соплом. При определенных соотношениях размеров сетки, ее расположении по отношению к струе удается преобразовать низкочастотный шум в высокочастотный, заглушение которого достигается более легко.

Для высокотемпературных газовых струй такой способ пока не получил применения. Преобразователь в виде сетки или решетки должен находиться на близком расстоянии от сопла в ядре струи. Способа охлаждения этой части струи пока не найдено, а преобразователи в зоне высокой температуры разрушаются.

Более подходящим способом воздействия на процесс образования шума оказалась система эжектор -- перфорированный насадок.

Экспериментальным путем подобрано такое сочетание размеров эжектора и
насадка, при котором обеспечивалась необходимая эжекция воздуха для охлаждения струи на входе и одновременное снижение шума.

Теоретически процесс шумообразования в таких системах еще недостаточно изучен, поэтому для практического их применения в шумоглушащих устройствах используют зависимости, полученные экспериментальным путем. Размеры перфорированного насадка определяют из следующего соотношения: S = 0,016G, где S -- суммарная площадь отверстий насадка, м2; G -- расход газа через сопло, кг/с.

При температуре газовой струи свыше 9000К применяют впрыск воды в начале эжектора, Отверстия насадка способствуют хорошему испарению воды и уменьшению температуры до расчетной. Описанная система применена для ряда глушителей выхлопа испытательных боксов.

Глушители выхлопа повышенной эффективности.

Необходимость повышения эффективности глушителей выхлопа вызывается ростом рабочих температур и расхода газа у современных реактивных двигателей. Для создания высокоэффективного глушителя требуется увеличение его длины (или высоты), так как скорость газа в глушителе должна быть ограничена для получения расчетного заглушения.

Компромиссным решением явилось создание глушителя с увеличенным проходным сечением без существенного увеличения длины звукопоглощающих элементов по сравнению с существующими. Конструкция такого глушителя основана на принципе параллельного соединения низкочастотного глушителя (в виде шахт ограниченных размеров 3,5X3,5 м), облицованных по периметру толстым слоем звукопоглотителя обычных цилиндрических звукопоглотителей, pacположенные по всему сечению и выполняющих роль высокочастотного глушителя. Глушитель с параллельным расположением низкочастотных и высокочастотных звукопоглощающих элементов представляет собой вертикальную металлическую шахту, соединенную с эжекторной трубой. Нижняя часть шахты имеет цилиндрический цоколь с переходом на квадратное сечение. Колодцы образуются из крупных блоков, внутренняя сторона которых имеет защитную акустически прозрачную кассету и за которой размещается толстый cлой звукопоглотителя (например, из минераловых плит). Размер колодцев определяют в соответствии с необходимой пропускной способностью глушителя. Число колодцев может быть различным. Толщину звукопоглощающего слоя выбирают исходя из требуемого заглушения, она должна быть ?300.

9. Описание технологического оборудования и конструкции стенда для испытания

Пульт управления

Пульт управления предназначен для управления режимом работы двигателя, процессом проведения испытаний, отображения и фиксации показаний приборов. На пульте управления размещаются контрольно-измерительные приборы, обеспечивающие расположение в определенном порядке приборов, аппаратуры и контроля работы двигателя, его агрегатов и систем стенда, также на пульте размещается ЭВМ (Оlivetti) для отображения и фиксации показаний приборов, датчиков измерителей задействованных в испытании двигателя. С помощью ЭВМ регистрируется более 1000 параметров, строятся графики и характеристики, происходящих при испытании процессов с выдачей, при необходимости, печатной информации. ЭВМ позволяет с большой точностью и скоростью корректировать работу двигателя, мгновенно отображается процесс после внесения корректировки. В ЭВМ заложены программы аварийного отклонения систем двигателя при возникновении аварийной ситуации.

Размещение систем управления на пульте произведено с учетом важности отображаемой информации и эргономики, посредством чего обеспечивается более точное отслеживание процесса испытания двигателя.

Управление рычагами топливного регулятора двигателя и контроль за его работой сосредоточены на пульте управления в кабине наблюдения.

Управление ручное, дистанционное и состоит из рычагов управления двигателем (на пульте), тросов, роликов, тяг и качалок.

Движение от РУД передается через тросы на кольцевые ролики и далее через тяги и качалки, расположенные на двигателе, на рычаги топливного регулятора. Положение РУД на топливном регуляторе фиксируется датчиком сельсинным ДС-11 и передается при помощи электрической сельсин передачи на указатель положения ИП-33, расположенном на пульте управления.

Электротельферы

Электротельферы типа ТЭЗ-511 предназначены для вертикального подъема, опускания, а также горизонтального перемещения груза, подвешенного на крюк электротельфера. Скорость подъема 2м/мин, скорость передвижения 2м/мин. На испытательных станциях используют для:

- монтажа входных устройств, двигателя;

- монтажа оборудования, для проведения специальных испытаний двигателей.

Электротельфер типа ТЭЗ-511 представляет собой подъемно-транспортный механизм, состоящий из следующих основных узлов: механизма подъема, механизма передвижения, подвески и токосъемника.

Механизм подъема состоит из моторобарабана (электродвигатель встроен в барабан), двухступенчатого редуктора с грузоупорным и колодочным тормозом, шкафа электроаппаратуры с пусковой аппаратурой, кольцевого токосъемника и кожуха, связывающего все узлы механизма подъема. Механизм подъема снабжен ограничителем (концевым выключателем) подъема крюка и ограничителем спуска крюка, который срабатывает благодаря счетчику оборотов барабана. Механизм передвижения состоит из приводной и холостой тележек, траверсы, с помощью которой осуществляется соединение тележек и подвески механизма подъема к механизму передвижения. Приводная тележка имеет два ведущих колеса, приводимых в движение от электродвигателя через два боковых редуктора. Холостая тележка представляет собой двухкатковую тележку с двумя боковыми направляющими роликами, собранную на траверсе. Подвеска электротельфера закрытого типа. Она состоит из двух штампованных щек обойм, стянутых двумя болтами и смонтированных на оси подвески и шейках траверсы.

Блок подвески установлен на одном радиальном подшипнике на неподвижной оси. Крюк с грузом передает давление на траверсу через упорный шариковый подшипник. токосъемник скользящего типа состоит из пластмассового корпуса, в котором находятся шесть щеток контакторов, снимающих ток с троллеев.

Каждое движение электротельфера (подъем, спуск, передвижение вправо и влево) осуществляется отдельной кнопкой. На корпусе кнопочной станции (или на кнопках) имеются указательные знаки в виде стрелок. Кнопки управления электротельфером, к которым подведен кабель, смонтированы в корпусе, подвешенном на специальном тросе. В электрической схеме предусмотрена возможность совмещения передвижения с подъемом или спуском груза.

Количество элекротельферов в боксе - 3; два из них расположены в передней

части бокса (перед станком), один - между станком и выхлопным устройством. Электротельферы перемещаются по силовой двутавровой балке, закрепленной к потолку бокса, вдоль оси. Управление тельфером осуществляется с кнопочной станции, соединенной с электротельфером кабелем. Кабель подвешен на специальном тросе.

Эксплуатация элекротельферов осуществляется согласно "Правилам эксплуатации грузоподъемных механизмов".

Выхлопное устройство бокса

Выхлопное устройство, предназначено для отвода отработанных газов от реактивного сопла газогенератора в пространство за разделительную перегородку бокса.

Выхлопное устройство состоит из эжекторной трубы, разделительной перегородки и раздающего устройства, предназначенного для раздачи газовой струи перед щитами шумоглушения.

Во время эксплуатации проводить регламентное обслуживание в соответствии с регламентным обслуживанием стендового оборудования.

Один раз в год производить покраску выхлопного устройства стенда. Бронещит

Бронещит предназначен для защиты конструкций бокса, станка, стендового оборудования от разрыва дисков турбины испытуемого газогенератора. Применяется при испытаниях по вбрасыванию птиц во входное устройство. В связи с тем, что процесс вбрасывания птиц в газогенератор является непредсказуемым процессом так как могут возникнуть отрывы лопаток, разрывы дисков компрессора и др. чрезвычайные ситуации для оборудования находящегося на стенде и работающих людей.

Монтаж бронещита на стенде производится после установки испытуемого газогенератора методом его надвигания на наиболее опасные участки (компрессор, турбина). Конструкция бронещита сварная. Сварка производится по всему контуру прилегания свариваемых элементов.

Бронещит выполнен из чередующихся слоев металла и резины, и состоит из двух частей.

Нижняя его часть на время постановки двигателя откатывается в сторону выхлопного устройства. Верхняя часть устанавливается с помощью тельфера. После сборки обеих частей бронещита с помощью болтовых соединений, его фиксируют в двух местах.

Бронещит - устройство принадлежащее к стендовому оборудованию, его красят эмалью оранжевого цвета.

Жалюзийные ворота

Жалюзийные ворота предназначены для изоляции стенда при неработающем двигателе.

Жалюзийные ворота, представляют собой ряд вращающихся вокруг вертикальных осей металлических пластин-створок, которые в закрытом состоянии образуют глухой металлический щит, а в открытом состоянии установленную по потоку решетку.

Открывание и закрывание жалюзи производится поворотом створок вокруг вертикальных осей, выполненных из труб, проходящих по оси симметрии пластин и установленных в шариковых подшипниках верхнем и нижнем. Поворот створок осуществляется с помощью шатунного механизма через червячный редуктор от электромотора.

Отключение электромотора при достижении створками крайних положений производится концевыми выключателями на шатунном механизме.

Один раз в год производить покраску створок жалюзийных ворот.

Описание станка

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13