бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Методы решения уравнений, содержащих параметр бесплатно рефераты

Начало курса алгебры 9 класса начинается с повторения, где предлагаются задачи с параметром (№11, №17-19, №50): на нахождение значения параметра при данных количествах корней; на нахождение значения параметра, при которых во множестве решений неравенства содержится определенное количество чисел, принадлежащих тому или иному множеству.

Рассматривая следующую главу «Неравенства и системы неравенств», нельзя не отметить систему задач, содержащую задания с параметрами (№№85-87). В этих заданиях предлагаются простейшие системы с параметром (см. [34], [35]).

Рассмотрим учебник алгебры и начала анализа 10-11 класса.

Сначала параметр встречается при изучении арккосинуса, арксинуса, арктангенса, арккотангенса и решении уравнений вида , , , . Рассматривается решение этих уравнений в общем виде, и в зависимости от значения а рассматриваются частные случаи, причем ставится ограничение на множество значений переменной а (, для первых двух уравнений).

Следующие задачи, содержащие параметр, предлагаются при изучении производной функции. Номера 803, 808, 853 содержат задания с параметром, которые предложены для закрепления знаний о касательной.

Отметим следующие задания (№№889, 914-917), содержащие параметр, на исследование функции на монотонность. Также отметим номера 926-929, так как в них необходимо решить уравнения третьей и четвертой степени графическим методом.

Особое геометрическое и алгебраическое значение имеют задачи с параметром, которые предложены в главе «Первообразная и интеграл». Предложено следующее задание (номера 1061, 1062): найти значения параметра, который содержится в функции, если известна площадь фигуры, ограниченной этой функцией.

В конце изучения курса алгебры и начала анализа в 11 классе выделен параграф для решения уравнений, содержащих параметр. В параграфе объясняется, что такое параметр на простейших уравнениях, рассматриваются линейные и квадратные уравнения.

Задачи, которые предлагаются для этой темы, где предложены различные задания для обобщения всех умений решения задач (номера 1855-1880).

Обобщая все задачи с параметром можно заявить, что данный учебник предлагает параметр как для углубленного изучения пройденных тем, как для изучения непосредственно самого параметра (см. [36], [37]).


2.3.             Алимов Ш.А. и др. «Алгебра с 7 по 9 класс» и «Алгебра и начала анализа 10 – 11 класс»

Начнем анализ этой группы учебников с 7 класса.

Уже при изучении темы «Уравнения с одним неизвестным» предлагаются задания, которые содержит задачи с параметром (№№123-125), где нужно решить простейшие линейные уравнения на нахождение значения параметра, при которых уравнение имеет корни или не имеет корней (№123,124). Особенно можно выделить номер 125, который предлагается в задачах повышенного уровня. Особенность заданий состоит в том, что предлагаются линейные, дробно-рациональные и квадратные уравнения с параметром при старшем коэффициенте.

После рассмотрения различных способов решения систем уравнений с двумя неизвестными предлагаются задачи, одна из которых содержит систему с двумя параметрами, где необходимо найти эти параметры, если система имеет единственное решение; бесконечное множество решений; не имеет решений (см. [25]).

Алгебра 8 класс.

Уравнения, содержащие параметр, встречаются впервые при изучении квадратных уравнений (№№ 414, 428, 442-443, 448). Из них можно выделить номера 442, 443, 448, в которых предлагаются задания на исследование количества корней уравнения в зависимости от значения параметра.

При изучении квадратичной функции рассматривается всего два номера с заданиями, содержащими параметр (№№602, 603). В этих заданиях необходимо найти значение параметра, если известно пересечение двух функций в заданной точке и параметр, содержится в коэффициенте одной из функций.

На этом авторы прекращают использование параметра при изучении тем учебника, но большое внимание уделяют параметру при повторении. Предлагаются задания, содержащие параметр, в основном, для повторения квадратных уравнений ( №№ 791, 792, 809, 818, 819, 822). Все номера одного характера – исследовать корни квадратного уравнения, то есть найти количество корней или сами корни в зависимости от значений параметра.

Уравнения аналогичного характера авторы приводят для внеклассной работы (№№ 889-896, 900, 902).

Выводы: Главным плюсом этого учебника является то, что авторы применяли уравнения, содержащие параметр, именно там, где его использование очень широко – при изучении квадратных уравнений. В этой теме количество задач, содержащих параметр, не может быть ограничено.

При изучении курса алгебры 9 класса уравнения, содержащие параметр предлагаются только в задачах для внеклассной работы (№№ 826-833). Предлагаются квадратные уравнения, где необходимо:

а) найти значения параметра, при которых уравнение имеет или не имеет корни;

б) определить принадлежность корней уравнения тому или иному числовому множеству.

Также предлагаются неравенства с параметром, где необходимо найти значение параметра, если неравенство выполняется при всех значениях неизвестной (см. [26]).

 Алгебра и начала анализа 10-11 класс.

В этом учебнике при изучении уравнения  рассматривается принадлежность корня множествам , . И это тоже в какой-то степени уравнение с параметром решаемое методом «ветвлений» (пункт 4.1.1). Аналогично при рассмотрении уравнения , , .

Обобщая знания, полученные при изучении третьей главы «Тригонометрические уравнения и неравенства», предложено тригонометрическое уравнение четвертой степени с  параметром, классифицированное как задача повышенной трудности.

При повторении курса алгебры и начала анализа 10 класса в системе задач не встречается заданий с параметром и можно утверждать, что в системе изучения этого курса авторы не уделяют внимания к параметру как таковому.

При изучении производной авторы предлагают четыре упражнения с параметром (№№ 544-547), где дана функция, зависящая как от неизвестной, так и от параметра и нужно найти значения параметра, если производная имеет определенный знак или равна нулю.

При изучении же темы «Применение производной к исследованию функций» система задач содержит всего одно задание с параметром (№559).

Аналогично, в системе задач темы «Интеграл» предложена всего одна задача с параметром (№ 670), где нужно найти площадь фигуры, ограниченной параболой, где заключен параметр, и прямой.

При повторении курса алгебры и начала анализа 11 класса предложена одна задача с параметром (№718). В системе задач при итоговом повторении всего курса алгебры содержатся задачи с параметром, аналогичные всем рассмотренным ранее (в предыдущих учебниках и данном). Такими являются: №№ 781, 782 – это при повторении решения уравнений; №№ 828-830 – при повторении решения неравенств.

Выводы: Главным плюсом этого учебника является то, что предложены примерные виды заданий, предлагавшиеся на вступительных экзаменах в вузы. Одними из таких заданий являются задачи с параметром (№№ 974-976).

В отличие от учебника Мордковича система задач с параметрами предложена только для углубленного изучения и повторения пройденного материала (см. [27]).


Проведенный анализ позволяет сделать следующие выводы:

·        в каждом проанализированном учебнике задания, содержащие  параметр, используется для проверки знаний и умений, приобретенных во время изучения той или иной темы. Предлагаются задания творческого характера, требующие от учащихся применения полученных знаний и умений в нестандартных условиях;

·        ни в одном из рассмотренных учебников не даётся чёткого определения параметра;

·        во всех учебниках задания однотипны;


3.   Основные  виды  уравнений,  содержащих  параметр

3.1.        Линейные и  квадратные  уравнения, содержащие параметр

Линейные и квадратные уравнения, содержащие параметр, можно объединить в одну группу – группу уравнений с параметром не выше второй степени.

Уравнения с параметром не выше второй степени являются самыми распространенными в практике итоговых и конкурсных заданий. Их общий вид определяется многочленом . Для таких уравнений всякое частное уравнение не выше второй степени принадлежит одному из следующих типов:

1.     , тогда ,

2.      и , тогда решений нет,

3.      и , тогда ,

4.     , , тогда ,

5.     , , тогда решений нет,

6.     , , тогда .

Контрольные значения параметра определяются уравнением . На выделенных контрольными значениями промежутках допустимых значений параметра дискриминант имеет определенный знак, соответствующие частные уравнения принадлежат одному из двух последних типов.

Тогда решением всякого уравнения с параметром не выше второй степени осуществляется по следующим этапам:

1.     На числовой прямой отмечаются все контрольные значения параметра, для которых соответствующие частные уравнения не определены.

2.     На области допустимых значений параметра исходного уравнения при помощи равносильных преобразований приводится к виду .

3.     Выделяют множество контрольных значений параметра, для которых .

Если уравнение  имеет конечное множество решений, то для каждого найденного контрольного значения параметра соответствующее частное уравнение решается отдельно. Проводится классификация частных уравнений по первым трем типам.

На бесконечном множестве решений уравнения  проводится решение уравнения , выделяются типы бесконечных и пустых особых частных уравнений. Множеству значений параметра, для которых  и , соответствует третий тип не особых частных уравнений.

4.     Выделяются контрольные значения параметра, для которых дискриминант обращается в нуль. Соответствующие не особые частные уравнения имеют двукратный корень .

5.     Найденные контрольные значения параметра разбивают область допустимых значений параметра на промежутки. На каждом из промежутков определяется знак дискриминанта.

Множеству значений параметра, для которых  и , соответствует тип не особых частных уравнений, не имеющих решений, для значений параметра из множества, где  и , частные уравнения имеют два различных действительных корня (см. [1],[7]).



Пример. Решить уравнение

2а∙(а-2)∙х = а-2.                                           (2)

Решение. Здесь контрольными будут те значения параметра, при которых коэффициент при х обращается в 0. Такими значениями являются, а=0 и а=2. При этих значениях параметра а, невозможно деление обеих частей уравнения на коэффициент при х. В то же время при значениях параметра а≠0 и а≠2 деление возможно. Таким образом, целесообразно множество всех действительных значений параметра разбить на подмножества

A1={0}, А2={2} и А3= {а≠0, а≠2}

и  решить уравнение (2) на каждом из этих подмножеств, т. е. решить уравнение (2) как семейство уравнений, получающихся из него при следующих значениях параметра:         1) а=0;    2) а=2;    3) а≠0, а≠2.

Рассмотрим эти случаи.

1) При а=0 уравнение (2) принимает вид 0∙х=2. Это уравнение не имеет корней.

2) При а=2 уравнение (2) принимает вид 0∙х=0. Корнем этого уравнения является любое действительное число.

3) При а≠0, а≠2  уравнение соответствует третьему типу откуда х ==.

0твет:      1) если а=0, то корней нет;

2) если а=2, то х — любое  действительное число;

3) если а≠0, а≠2 , то  х = .


Пример. Решить уравнение

(а — 1)∙ х2+2∙ (2а+1)∙ х + (4а+3) =0.                      (3)

Решение. В данном случае контрольным значением параметра a является единица. Дело в том, что при a=1 уравнение (3) является линейным, а при а≠1 оно квадратное (в этом и состоит качественное изменение уравнения). Значит, целесообразно рассмотреть уравнение (3) как семейство уравнений, получающихся из него при следующих значениях параметра: 1) a=1; 2) а≠1.

Рассмотрим эти случаи.

1) При a=1 уравнение (3) примет вид 6х+7=0. Из этого уравнения находим х = – .

2) Из множества значений параметра а≠1 выделим те значения, при которых дискриминант уравнения (3) обращается в 0.

Дело в том, что если дискриминант D=0 при а=ао, то при переходе значения D через точку ао дискриминант может изменить знак (например, при а<ао D < 0, а при а>ао D > 0). Вместе с этим при переходе через точку ао меняется и число действительных корней квадратного уравнения (в нашем примере при а<ао корней нет, так как D < 0, а при а>ао D > 0 уравнение имеет два корня). Значит, можно говорить о качественном изменении уравнения. Поэтому значения параметра, при которых обращается в 0 дискриминант квадратного уравнения, также относят к контрольным значениям.

Составим дискриминант уравнения (3):

 =(2а+ l)2 — (а — 1) (4а+3). После упрощений получаем  = 5а+4.

Из уравнения =0 находим   — второе контрольное значение параметра а. При этом если , то D < 0; если  , то  D ≥ 0;  и  .

Таким образом, осталось решить уравнение (3) в случае, когда  и  в  случае, когда     и .

Если  ,  то  уравнение  (3)  не  имеет  действительных корней;

если  же   и , то  находим  ;

если , то  и тогда .

Ответ: 1) если  ,  то  корней  нет;

2) если  а = 1,  то  х =;

3) если , то ;

4)  если ,    то    .



3.2.              Дробно-рациональные уравнения, содержащие параметр, сводящиеся к линейным


Процесс решения дробно-рациональных уравнений протекает по обычной схеме: данное уравнение заменяется целым путем умножения обеих частей уравнения на общий знаменатель левой и правой его частей. После чего учащиеся решают известным им способом целое уравнение, исключая посторонние корни, то есть числа, которые обращают общий знаменатель в нуль. В случае уравнений с параметрами эта задача более сложная. Здесь, чтобы посторонние корни исключить, требуется находить значение параметра, обращающее общий знаменатель в нуль, то есть решать соответствующие уравнения относительно параметра (см. [1]).


Пример. Решить уравнение

.                  (4)

Решение. Значение а=0 является контрольным. При a=0 уравнение (4) теряет смысл и, следовательно, не имеет корней. Если  а≠0, то после преобразований уравнение (4) примет вид:

х2+2 (1 — а) х +а2 — 2а — 3=0.                  (5)

Найдем дискриминант уравнения (5) = (1 — a)2 — (a2 — 2а — 3) = 4. Находим корни уравнения (5): х1 =а + 1,   х2 = а — 3. При переходе от уравнения (4) к уравнению (5) расширилась область определения уравнения (4), что могло привести к появлению посторонних корней. Поэтому необходима проверка.

Проверка. Исключим из найденных значений х такие, при которых х1+1=0, х1+2=0, х2+1=0, х2+2=0.

Если  х1+1=0, т. е. (а+1)+1=0, то а = - 2.

Таким образом, при а = - 2  х1-посторонний корень уравнения (4).

Если х1+2=0, т. е. (а+1)+2=0, то а = - 3.

Таким образом, при а = - 3  x1- посторонний корень уравнения (4).

Если х2+1 =0, т. е. (а-3)+1=0, то а=2.

Таким образом, при а=2 х2 - посторонний корень уравнения (4)'.

Если х2+2=0, т. е. (а - 3)+2=0, то а=1.

Таким образом, при а = 1 х2- посторонний корень уравнения (4).

Страницы: 1, 2, 3, 4, 5