бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Развитие функциональной линии в курсе алгебры 7-9 классов (на примере учебников по алгебре под ред. ... бесплатно рефераты


№ 211. (Задача-исследование.)

1)    Постройте параболу .

2)    В этой же системе координат проведите прямую d, уравнение которой у = –1, и отметьте точку F(0; 1).

3)    Отметьте на параболе несколько точек с целыми координатами и для каждой из них вычислите расстояние до точки F  и до прямой d.

4)    Сделайте вывод из полученных результатов.

5)    Докажите, что все точки параболы  равноудалены от точки F и прямой d.

Указание. Нужно взять произвольную точку параболы (х; ) и составить выражения для нахождения расстояний от этой точки до точки F и прямой d.

В основу этой задачи положено определение параболы как геометрического места точек, находящихся на одинаковом расстоянии от данной точки и от данной прямой, не проходящей через эту точку. Это определение эквивалентно тому, которое (в неявном виде) используется в школьном курсе: парабола – это линия, которая является графиком уравнения у = ах2.

Обязательным результатом изучения данного пункта следует считать умение формулировать утверждение о том, что представляет собой график функций у = ах2, изображать этот график схематически для а > 0 и а < 0 и строить его по точкам для конкретного значения а. Свободное владение этими опорными знаниями необходимо для усвоения дальнейшего материала. Школьники должны знать еще и о симметрии графиков функций у = ах2 относительно оси х при противоположных значениях а, и об изменении «крутизны» параболы при изменении а.

В следующем пункте «Сдвиг графика функции  вдоль осей координат» рассматривается сдвиг функции . Сначала строится график функции , а затем этот график сдвигается (вверх, вниз, вправо, влево) и определяется, какую функции задаёт этот график. Затем делаются выводы:

1.     Чтобы построить график функции , нужно перенести параболу  вдоль оси у на q единиц вверх, если > 0, или на  единиц, если q < 0. При этом вершина параболы окажется в точке

2.     Чтобы построить график функции , нужно перенести параболу  вдоль оси х на р единиц влево, если р > 0, или на  единиц вправо, если р<0, при этом вершина параболы окажется в точке .

Эти формулировки учащиеся запоминать не обязаны. Понимание сути вопроса лучше проверить при выполнении конкретных заданий.

После этого рассматривается несколько примеров, а затем делается вывод о том, как построить график функции  (из графика функции  с помощью параллельных переносов вдоль осей абсцисс и ординат в зависимости от знака чисел q и р).

Система упражнений.

Большая часть упражнений нацелена не только на отработку навыков построения графиков функций вида у = ах2 + q и у = а(х + р)2, но и на умение распознавать тип формулы, а также использовать графические соображения для исследования свойств функций. Кроме того, есть упражнения на построение графиков функций вида у а(х + р)2 + q и у = ах2 + bх + с. Увеличивать число упражнений такого типа нецелесообразно, отработка соответствующих умений здесь не предполагается (более того, с основной массой учащихся это вряд ли возможно). Также в этом пункте содержаться задачи с параметром (в некоторых заданиях параметр присутствует неявно); задачи, предполагающие перенос приемов построения графиков с помощью сдвигов вдоль осей на функции других видов; построение графиков кусочно-заданных функций.

Комментарии к некоторым упражнениям:

№ 215. Постройте график функции:

а) ;

б) ;

в) ;

г) .

Для каждой функции укажите промежуток возрастания и промежуток убывания, а также наибольшее (или наименьшее) значение.

Указание. Полезно вначале изобразить график схематически. (В дальнейшем учащиеся будут делать это мысленно, что является очень важным умением, «организующим» деятельность по построению графика и предупреждающим ошибки.)

№ 219. Из приведенного списка функций

;

;

;

;

;

.

выберите те, которые:

а) принимают только положительные значения (укажите наименьшее значение функции);

б) принимают только отрицательные значения (укажите наибольшее значение функции).

Указание. Упражнение следует выполнять, опираясь на схематический график.

№ 233. Параболу у = х2 сдвинули на несколько единиц вдоль оси х так, что она прошла через точку М. Запишите формулу, соответствующую новой параболе, если точка М имеет координаты:

а) х = 0, у = 4;

б) , у = 4.

Сколько решений имеет задача в каждом случае?

Указание. Так как новая парабола получена в результате сдвига вдоль оси х параболы у х2, то она может быть задана формулой вида у =(х + р)2. Подставив в эту формулу координаты точки М и решив получившееся уравнение, найдем значение р. В каждом случае задача имеет два решения. Результат полезно проиллюстрировать, построив соответствующие графики.

№ 238. В одной системе координат постройте графики функций:

а) , , ;

б) , , ;

в) , , .

Указание. Предполагается, что учащиеся увидят возможность построения графиков путем сдвига исходного графика вдоль осей координат.

В результате изучения этого пункта учащиеся должны знать, с помощью каких сдвигов вдоль координатных осей из графика функции у = ах2 можно получить параболу, задаваемую уравнениями , , , уметь в конкретных случаях строить эти параболы или изображать их схематически (отметив вершину, проведя ось симметрии, показав направление ветвей).

В четвёртом пункте «График функции » завершается знакомство с квадратичной функцией.

Здесь рассматривается алгоритм построения графика функции . Утверждается, что график данной функции можно получить из графика функции  с помощью параллельных переносов вдоль координатных осей. Что доказывается с помощью представления функции  в виде  (на основе конкретного примера).

Далее делаются выводы о том, что график функции  – это такая же парабола, что и парабола , у неё то же направление ветвей, вершиной параболы  служит точка с координатами  и , а осью симметрии – вертикальная прямая .

В заключение этого пункта разобраны два примера, в которых даны образцы рассуждений. В первом рассматривается новый прием построения параболы, и с опорой на график описываются свойства данной квадратичной функции. Во втором примере рассматривается задача физического содержания.

Система упражнений.

Упражнения направлены, прежде всего, на формирование умения строить график функции  и читать по графику ее свойства. Есть упражнение, в котором содержится план построения графика. Собственно это тот же план, которым учащиеся пользовались раньше, но теперь они по-новому будут выполнять первый его пункт – нахождение координат вершины параболы. Нужно также добиваться аккуратного вычерчивания параболы (они часто получаются у учащихся «угловатыми»). Надо заметить, что нахождение точек пересечения параболы с осью х не является обязательным требованием при её построении. В то же время желательно отмечать точку пересечения с осью у (а также симметричную ей точку). Большое место отводится задачам прикладного характера, которые чрезвычайно важны с точки зрения демонстрации применимости свойств квадратичной функции. Кроме того, как и в предыдущих пунктах, здесь есть задачи с параметром.

Комментарии к некоторым упражнениям:

№ 247. График функции y = f(x) пересекает оси координат в точках А, В и С. Найдите неизвестную координату каждой из этих точек, если:

а) ; А(0; ...), В(...; 0), С(...; 0);

б) ; А(0; ...), В(...; 0), С(...; 0);

в) ; А(0; ...), В(...; 0), С(...; 0);

г) ; А(0; ...), В(...; 0), С(...; 0);

Указание. Не следует ограничиваться формальными вычислениями; полезна будет геометрическая интерпретация. Учащиеся должны понять, что буквой А обозначена точка пересечения графика с осью у, а буквами В и С – точки пересечения с осью х. В качестве дополнительного задания можно предложить показать положение этих точек в координатной плоскости и схематически изобразить параболу (в случаях а), в) и г)).

№ 254. Постройте график функции:

а) ;

б) ;

в);

г).

Указание. В правой части каждого уравнения записано произведение двух линейных множителей; иными словами, правая часть – это квадратный трехчлен, разложенный на множители. Поэтому графиком каждой из заданных функций является парабола.

Очевидно, что для построения графиков нецелесообразно переходить к уравнению вида  и вычислять координаты вершины по формулам. Проще отметить точки пресечения параболы с осью х и найти абсциссу вершины как середину отрезка с концами в этих точках. Направление ветвей параболы легко уточнить, определив (устно) знак коэффициента при х2.

№ 267. (Задача-исследование.) Исследуйте, как влияет на график изменение одного из коэффициентов a, b и с в уравнении параболы. Для этого:

1)  в одной системе координат начертите параболы  для с = 0; 1; 2; 4 и с = –1; –2; –4;

2)  в одной системе координат начертите параболы  для b = 0; 1; 4; 5 и b = –1; –4; –5;

3)     в одной системе координат начертите параболы  для а = ; 1; 2; 3.

Указание: Задача интересна, но достаточно трудоёмка. Её можно разбить на три самостоятельные задачи и предложить их разным учащимся. Результаты можно будет обсудить в группах, в которые войдут ученики, выполнявшие одно и то же задание, а затем, после уточнения выводов, познакомить с ними остальных.

В результате изучения этого материала учащиеся получают удобный способ нахождения координат вершины параболы: их можно вычислять по формулам. Эту формулу учащиеся должны выучить наизусть. В то же время, формулу для вычисления ординаты вершины помнить не обязательно, ее можно найти, подставив значение известной абсциссы в уравнение параболы.

На этом рассмотрение функциональной линии в основной школе по учебникам математики [36], [35], [34] заканчивается.

В этих учебниках функциональная линия не является ведущей. Понятие функции вводится лишь в 8 классе. Для определения понятия «функция» используется генетический подход, и его введение осуществляется конкретно-индуктивным путём. Исследование конкретных функций происходит графически.

Но надо заметить, что в конце каждой главы этих учебников содержится пункты «Для тех, кому интересно», в некоторых из них содержится материал, касающийся функциональной линии. Здесь рассмотрены такие темы:

Ø     Геометрическая интерпретация неравенств с двумя переменными.

Ø     Целая и дробная части числа.

Ø     Применение свойств квадратичной функции при решении задач.

Ø     Графики уравнений, содержащих модули.

Ø     График дробно-линейной функции.

2.5. Опытное преподавание.

Перед тем, как проводить опытное преподавание, я изучила соответствующую математическую и методическую литературу. После чего были разработаны и проведены факультативные занятия по теме «Графики функций, аналитическое выражение которых содержит знак абсолютной величины».

Опытное преподавание осуществлялось в 2003 году в школе № 2 п. Красная Поляна Вятско-Полянского района.

Мною было проведено три факультативных занятия в 9 классе:

1)    График функции .

2)    График функции .

3)    График функции .

Подробное описание этих факультативов содержится в приложении 2.

Цель данного факультативного курса – подготовка учащихся к конкурсным экзаменам по математике в учебные заведения, продолжение образования, повышение уровня математической культуры.

Факультатив строится как углублённое изучение вопросов, предусмотренных программой основного курса. Углубление реализуется на базе обучения методам и приёмам решения математических задач, требующих применения логической и операционной культуры, развивающих научно-теоретическое и алгоритмическое мышление учащихся.

Тематика задач не выходит за рамки основного курса, но уровень их повышенный, существенно превышающий обязательный.

Данные факультативы составлены для, проведения 1 час в неделю, в 9 классе, после того, как изучены линейная функция, обратная пропорциональность квадратичная функция, функция, содержащая знак абсолютной величины. Эти факультативы можно проводить и в 8 классе, после изучения линейной функции (убрать из примеров обратную пропорциональность и квадратичную функцию), затем вернутся к этой теме после изучения обратной пропорциональности и в 9 классе после изучения квадратичной функции, то есть осуществлять концентрическое изучение данной темы.

Занятия проводились для учащихся, интересующихся математикой, желающих получить новые знания по математике. Хотелось бы заметить, что было нелегко организовать учеников на посещение факультативов, поскольку факультативные занятия в школе не проводились. Кроме того, учащиеся сильно загружены учебой, что тоже сыграло отрицательную роль.

Данная тема давалась учащимся непросто, возникала путаница с построение функций вида  и . Но, несмотря на это данный факультативный курс вызвал интерес у учащихся.

Заключение

Место изучения функциональной линии в учебниках по алгебре 7–9 классов различно. В рассмотренных в данной работе учебниках функциональная линия не является ведущей, за исключением учебного комплекта А.Г. Мордковича. В нём этой линии отводится ведущее место. Введение понятия «функция» во всех учебниках осуществляется конкретно-индуктивным путем, при использовании генетического подхода. Для исследования конкретных функций в большинстве учебников применяется комбинированный метод.

В учебном комплекте [36], [35], [34] теоретический материал изложен достаточно интересно, содержится много фактов из истории математики. Но в этих учебниках содержится много сведений, которые приведены без доказательств, хотя есть и много задач на доказательство.

Хотелось бы отметить, что в этих учебниках формулировки задач интересны, разнообразны и в них прослеживается практическая направленность и связь с другими науками (например, физикой и геометрией). Много внимания уделено вычислительной культуре учащихся, обеспечена уровневая дифференциация в обучении.

В учебниках [36], [35], [34] функциональная линия не является ведущей. Понятие функции вводится лишь в 8 классе. Для определения понятия «функция» используется генетический подход, и его введение осуществляется конкретно-индуктивным путём. Исследование конкретных функций происходит графически.

Цель, с которой проводилось исследование, достигнута: была проанализирована функциональная линия в курсе алгебры 7– 9 классов и разработаны методические рекомендации по изучению данной темы по учебному комплекту под редакцией Г.В. Дорофеева.

В ходе исследования были решены следующие задачи:

1)    Проанализирована математическая, учебно-методическая и психолого-педагогическая литература, выполнен анализ школьной программы по математике.

2)    Разработана методика изучения функциональной линии в курсе алгебры 7–9 классов.

3)    Выявлена роль и место функциональной линии в различных учебных комплектах по математике для 7–9 классов.

4)    Выявлены особенности учебников [36], [35], [34].

5)    Составлены уроки по теме «Линейная функция, её свойства и график».

Страницы: 1, 2, 3, 4, 5, 6, 7