Платина
Сернистое соединение PtS - порошок коричневого цвета, не растворимый в
кислотах и царской водке; PtS2 - черный осадок, получаемый из растворов
действием сероводорода, растворимый в царской водке.
Платина при нагревании хорошо соединяется с фтором и хлором. При 360 °С
воздействием хлора на платину можно получить тетрахлорид PtCl4, который при
температуре выше 370 °С переходит в трихлорид PtCl3, а при 435 °С
распадается на хлор и металлическую платину; PtCl2 растворяется в слабой
соляной кислоте с образованием платинисто-хлористоводородной кислоты
H2[PtCl4], при действии на которую солей металлов получаются хлороплатиниты
Me2[PtCl4] (где Me - K, Na, NH4 и т.д.).
Тетрахлорид платины PtCl4 при воздействии соляной кислоты образует
платинохлористоводородную кислоту H2[PtCl6]. Соли ее - хлороплатинаты
Me2[PtCl6]. Практический интерес представляет хлороплатинат аммония
(NH4)2[PtCl]6 - кристаллы желтого цвета, малорастворимые в воде, спирте и
концентрированных растворах хлористого аммония. Поэтому при аффинаже
платину отделяют от других платиновых металлов, осаждая в виде
(NH4)2[PtCl6].
В водных растворах сульфаты легко гидролизуются, продукты гидролиза в
значительном интервале pH находятся в коллоидном состоянии. В присутствии
хлорид-ионов сульфаты платины переходят в хлороплатинаты.
Поведение платины в обогатительных операциях.
Формы нахождения платины в рудах.
Формы нахождения платины в рудах определяют ее поведение в последующих
процессах обогащения. Поэтому их изучение имеет большое значение для выбора
технологической схемы переработки платинусодержащих руд и концентратов.
Кларк и Вашингтон, а позднее И. И В. Ноддак подсчитали содержание
платины в земной коре. Первые принимали в расчет только ту платину, которая
находится в россыпях и коренных ультраосновных породах, а вторые учитывали
также платину, находящуюся в рассеянном состоянии. Иногда пользуются
данными по распространенности платины, приводимыми Гольдшмидтом. Обобщение
ряда исследований на основе многочисленных определений дано А. П.
Виноградовым.
Таблица 3.
Содержание платины в земной коре, %.
|По Кларку и |По И. и В. |По |По А. П. |
|Вашингтону |Ноддак |Гольдшмидту |Виноградову |
|1.2·10-8 |5·10-6 |1·10-8 |5·10-7 |
Платину добывают в “первичных” и “вторичных” месторождениях. К первым
относятся открытые в 1908 году канадские медноникелевые магнитные колчеданы
в округе Садбери, южноафриканские медноникелевые колчеданы в Трансваале и
месторождения Норильска; здесь платина присутствует в виде сульфидов.
Вторичные месторождения обязаны своим появлением выветриванию первичных
месторождений и последующему смыванию выветренных пород, причем платиновые
металлы, имеющие большую плотность, оседали в определенных местах.
Вторичные месторождения находятся в Колумбии. Но они утратили свое значение
в 20-х годах прошлого века, когда на западных и восточных склонах
Уральского хребта были найдены большие залежи платиновых руд. В уральских
месторождениях минералы платиновых металлов генетически связаны с
глубинными ультраосновными породами, главным образом, с дунитами.
Таблица 4.
Средний состав уральской россыпной и коренной платины, %
|Тип месторождения |Pt |
|Россыпная |77.5 |
|Коренная |76.7 |
|Средний состав аффинируемой платины |78.4 |
В канадских месторождениях платина встречается в виде сперилита PtAs2,
куперита PtS и некоторых более редких минералов. Однако большая часть
платиновых металлов находится в сульфидах в виде твердого раствора.
Содержание платины в рудах достигает 1.5-2.0 грамма на 1 тонну руды.
Примерно такой же минералогический состав имеют южноафриканские руды,
кроме того здесь найдена самородная платина и ферроплатина.
Каждому типу руд и их минеральным разновидностям свойственны свои
особенности платиновой минерализации, обусловленные различной
обогащенностью платиновыми металлами, различным соотношением платины,
палладия, иридия, родия, рутения и осмия, а также различием форм нахождения
металлов.
Многообразие типов руд и различие форм нахождения платиновых металлов в
медно-никелевых рудах вызывает большие сложности с полнотой извлечения
платиновых металлов в готовые концентраты, направляемые в металлургическую
переработку.
Получение платиновых металлов из россыпей.
Россыпи платиновых металлов, образованные в результате разрушения
коренных пород, известны во многих странах, но промышленные запасы в
основном сосредоточены в Колумбии, Бразилии и Южной Африке.
Процесс извлечения платиновых металлов из россыпей сводится к двум
группам операций: добыче песков и их обогащению гравитационными методами.
Пески можно добывать подземными и открытыми способами; как правило,
применяют открытые горные работы, выполняемые в два этапа: вскрыша пустой
породы и добыча платинусодержащих песков. Добычу песков обычно совмещают с
их гравитационным обогащением в одном агрегате, например, драге.
Добытая горная масса из дражных черпаков поступает в промывочную бочку,
где осуществляется дезинтеграция и грохочение. Процесс дезинтеграции горной
массы в бочке происходит посредством механического разделения и размыва ее
водой при перекатывании породы внутри бочки и орошении напорной струей
воды. Порода при этом разделяется на два продукта: верхний (галька, крупные
камни, неразмытые камни глины) не содержит платины и направляется в отвал;
нижний поступает последовательно на шлюзы, отсадочные машины и
концентрационные столы. В результате обогащения получается шлиховая
платина, содержащая до 70-90 % платиновых металлов. Ее направляют на
аффинаж.
Извлечение платины при обогащении сульфидных платинусодержащих руд.
Технологические схемы извлечения платиновых металлов при обогащении
вкрапленных руд определяются формами нахождения этих металлов в данном
месторождении. Если платиновые металлы представлены самородной платиной и
ферроплатиной, то в технологическую схему обогащения входит операция по
получению гравитационного концентрата, содержащего повышенные концентрации
платиновых металлов. Если в рудах платиновые металлы, в частности платина,
находятся в виде магнитной ферроплатины, то обычно применяют магнитную
сепарацию с последующей переработкой богатого продукта либо в отдельном
цикле, либо совместно с никелевым концентратом в пирометаллургическом
процессе. Первую схему применяют, например, для обогащения
платинусодержащих руд Южной Африки.
Технологический процесс гравитационно-флотационного обогащения
южноафриканских руд включает дробление исходной руды с последующим тонким
измельчением ее в две стадии в шаровых мельницах, работающих в замкнутом
цикле с гидроциклонами.
Свободные зерна самородной платины отделяют в цикле измельчения на
шлюзах с кордероевым покрытием. Полученные концентраты подвергают
перечистке на концентрационных столах с получением гравитационного
концентрата, содержащего 30-35 % Pt, 4-6 % Pd и 0.5 % других металлов
платиновой группы.
Пульпу после выделения гравитационного концентрата сгущают и направляют
на флотацию. Конечным продуктом флотации является концентрат, содержащий:
3.5-4.0% Ni, 2.0-2.3% Cu, 15.0% Fe, 8.5-10.0% S; сумма платиновых металлов
110-150 г/т. Этот концентрат поступает в металлургическую переработку.
Извлечение платиновых металлов в цикле обогащения достигает 82-85 %.
Бедная вкрапленная руда месторождения Садбери подвергается дроблению,
измельчению с последующей флотацией и магнитной сепарацией. В результате
получается никелевый концентрат, содержащий платиновые металлы, медный
концентрат, в состав которого входят золото и серебро, и пирротиновый
концентрат, практически не имеющий благородных металлов.
При обогащении вкрапленных руд отечественных месторождений получаются
два концентрата: медный и никелевый. Значительные потери металлов-спутников
с хвостами обогащения объясняются тем, что они ассоциированы с пирротином,
уходящим в отвал.
Поведение платины при металлургической переработке сульфидных
платинусодержащих руд и концентратов.
Основные технологические операции переработки медно-никелевых концентратов.
При обогащении сульфидных медно-никелевых руд получаются медный и
никелевый концентраты, перерабатываемые по сложной технологической схеме
(см. Приложение №1, рис.1.)
Никелевый концентрат после агломерации или окатывания плавят в
электротермических (реже отражательных) печах, в результате чего получают
штейн и шлак. Шлак на некоторых заводах после грануляции и измельчения
подвергают флотации для извлечения взвешенных частиц штейна, содержащих
платиновые металлы. Штейн, концентрирующий основную массу платиновых
металлов, проходит операцию конвертирования на обеднительную электроплавку,
и файнштейна, который медленно охлаждается, дробится, измельчается и
флотируется с получением медного концентрата, перерабатываемого в медном
производстве, и никелевого, направляемого на обжиг в печах кипящего слоя.
При охлаждении файнштейна компоненты претерпевают кристаллизацию в
следующей последовательности: первичные кристаллы сульфида меди ( двойная
эвтектика, состоящая из сульфидов меди и никеля, ( тройная эвтектика,
состоящая из сульфидов меди, никеля и медно-никелевого металлического
сплава. Металлический сплав, выход которого на различных заводах составляет
8-15 %, коллектирует до 95 % платиновых металлов, содержащихся в
файнштейне. Поэтому на некоторых заводах металлическую фазу выделяют
магнитной сепарацией и направляют на восстановительную плавку с получением
анодов.
Полученную после обжига никелевого концентрата закись подвергают
восстановительной плавке на аноды в дуговых электропечах. Аноды подвергают
электрорафинированию; выпадающий на аноде шлам концентрирует основную массу
платиновых металлов.
Платиновые металлы, находящиеся в медном концентрате, после обжига,
отражательной плавки, конвертирования и огневого рафинирования
концентрируются в медных анодах, после электрорафинирования переходят в
медный шлам. Медный и никелевый шламы обогащают с получением концентратов,
содержащих до 60 % платиновых металлов. Эти концентраты направляют на
аффинаж.
В последние годы для переработки медных и никелевых концентратов
предложены высокоинтенсивные автогенные процессы: плавка в жидкой ванне,
взвешенная плавка, кислородно-взвешенная плавка и др. Применяют также
гидрометаллургическую переработку платинусодержащих сульфидных концентратов
с использованием окислительного автоклавного выщелачивания, соляно- и
сернокислое выщелачивание, хлорирование при контролируемом потенциале и
другие процессы.
Таким образом, платиновые металлы в процессе пиро- и
гидрометаллургической переработки подвергают воздействию окислителей при
температурах до 1200-1300 °С, действию кислот при высоких окислительных
потенциалах среды, анодному растворению при значительных
электроположительных потенциалах. Поэтому необходимо рассмотреть поведение
этих металлов в различных процессах с целью создания условий для повышения
извлечения их в принятых и проектируемых технологических схемах переработки
платинусодержащих сульфидных медно-никелевых концентратов.
Физико-химические основы поведения платины при переработке сульфидного
сырья.
Пирометаллургические процессы.
При переработке сульфидных руд пирометаллургическими способами
благородные металлы частично теряются с отвальными шлаками, пылями и
газами. Для теоретической оценки возможности таких потерь и создания
условий для их уменьшения большой интерес представляет зависимость
свободных энергий образования оксидов и сульфидов благородных металлов от
температур.
Таблица 5.
Свободные энергии окисления сульфидов.
| |Уравнение |(GТ, Дж/моль О2 при |
|Реакция |свободной |температуре, К |
| |энергии |1173 1273 |
| |(GТ, Дж/моль |1573 |
|PtS(тв)+2O2(г)=PtO2(тв)+SO2|-228000+87.5·Т| - -227 |
|(г) | |-214 |
|PtS(тв)+2O2(г)=PtO2(г)+SO2(|-17600-7.5·Т |-26 -27 |
|г) | |-29 |
Агломерация. В процессе агломерации концентрат подвергается окускованию
и частичной десульфурации при 1000-1100 °С, что сопровождается процессами
разложения высших сульфидов и окисления получившихся продуктов кислородом
воздуха.
Электроплавка сульфидного никель-медного концентрата осуществляется в
электропечи, куда поступает концентрат, содержащий в зависимости от
месторождения от 20 до 150 г/т платиновых металлов. В шихту вместе с
окатышами и агломератом добавляют оборотные продукты и, в зависимости от
состава исходного сырья, известняк или песчаник. Температура расплава на
границе с электродом достигает 1300-1400 °С. Пустая порода ошлаковывается;
шлак сливают, гранулируют. На некоторых предприятиях его подвергают
измельчению и флотации с целью более полного извлечения благородных
металлов. Содержание благородных металлов в шлаке в зависимости от режима
плавки и состава концентрата колеблется от 0.3 до 1.0 г/т. Штейн
концентрирует основную массу платиновых металлов. Содержание их в штейне
колеблется в пределах 100-600 г/т.
Процесс плавки протекает в основном в восстановительном режиме, поэтому
потери платиновых металлов в этом процессе определяются механическими
потерями мелких корольков штейна, взвешенных в шлаковой фазе. Эти потери
могут быть устранены флотацией шлаков с извлечением платиновых металлов в
сульфидный концентрат. При этом извлечение платины может достигать более
99.0 %.
Конвертирование. Полученный при электроплавке штейн подвергается
конвертированию. Конвертирование, цель которого состоит в возможно более
полном удалении сульфида железа из никель-медных штейнов, осуществляется
при температуре около 1200 °С. Процесс протекает в сульфидных расплавах,
где активность платиновых металлов очень невелика. Поэтому в процессе
конвертирования в шлаковую фазу в очень незначительных количествах
переходит платина (1.4 |[PtCl6]2- при (а>1.4 |
| |В. |В. |
При содержании в сплавах 0.01-1.0 % платинового металла, он замещает в
кристаллической решетке сплава атомы никеля или меди, не образуя
самостоятельных структур.
Известно, что в присутствии сульфидной, оксидной и металлической фаз
платиновые металлы концентрируются в металлической фазе. Поэтому в
никелевых и медных промышленных анодах, содержащих в качестве примесей
сульфидные и оксидные фазы, платиновые металлы равномерно распределены в
металлической фазе, образуя кристаллическую решетку замещения. Это приводит
к образованию в решетке сплава микроучастков (зон) с более положительным
равновесным потенциалом. Металлы в этих зонах не растворяются при
потенциале работающего анода и выпадают в нерастворимый осадок - шлам. В
случае повышения потенциала анода до величины, соответствующей потенциалу
ионизации платиновых металлов, начинается переход этих металлов в раствор.
Страницы: 1, 2, 3, 4
|