бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Ионоселективные электроды бесплатно рефераты

Ионоселективные электроды

МИНИСТЕРСТОВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Химический факультет

кафедра физической химии

РЕФЕРАТ

Ионоселективные электроды

выполнил:

студент 2 курса

4 группы

Юденко Валерий

проверил:

Введенский Александр Викторович

Воронеж 2000

Содержание

Введение 3

История создания ионоселективных электродов 4

Ионоселективные электроды 4

Электроды с твердыми мембранами 4

Лантанфторидный электрод 4

Сульфидсеребряные электроды 5

Галогенсеребряные и некоторые другие электроды на основе

серебра 6

Электроды на основе сульфидов некоторых двузарядных металлов

7

Стеклянные электроды 7

Электроды с жидкими мембранами 8

Электроды на основе жидких катионитов 9

Электроды на основе жидких анионитов 9

Нитрат - селективный электрод 10

Газовые электроды 11

Энзимные электроды 12

Заключение 13

Литература 14

Введение

Для определения состава и свойств различных соединений и растворов

используются химические, физические и физико-химические методы анализа. В

некоторых случаях появляется необходимость определять концентрацию

различных ионов в растворе. Целью данной работы является рассмотрение

ионоселективных электродов: их разнообразие, изготовление, принцип

действия, область применения данных электродов, а также более подробное

рассмотрение свойств мембранного электрода, его особенности.

История ионоселективных электродов

Ионометрия в настоящее время представляет собой достаточно широкую

область науки и техники и играет не мало важную роль в аналитической

химии. Основная задача ионометрии - изучение и разработка различного рода

ионоселективных электродов.

История развития мембранных электродов связана с исследованиями

физиологических процессов. В середине ХIХ века физиологи обнаружили

возникновение между отдельными частицами организмов разности электрических

потенциалов. Для понимая действия сложных биологических мембран химиками в

конце ХIХ были созданы простейшие модели мембран.

В 1890 году Оствальд воспользовался понятием полупроницаемой мембраны

для создания модели биологической мембраны и показал, что значение

разности потенциалов в такой мембране можно считать предельным в случае

жидкостного потенциала, когда подвижность одного из ионов равна нулю.

В начале ХХ столетия была обнаружена способность стеклянной мембраны

реагировать на изменение концентрации ионов водорода. Первые основные

исследования потенциалов стеклянных мембран проведены Кремером и Габером.

Ими же созданы и первые прототипы стеклянных и других электродов с

твердыми и жидкими мембранами.

Первые стеклянные электроды для практического измерения рН в

растворах были предложены в 20-х годах Юзом, Долом и Мак-Иннесом,

Никольским и Шульцем. В 50-х годах появились стеклянные электроды с

функциями ионов щелочных металлов, их которых наибольшее практическое

значение имеет натриевый стеклянный электрод.

Жидкие мембраны, содержащие растворенный ионит, впервые изучали

Соллнер и Шин. Однако у этих мембран отсутствовала достаточная

селективность по отношению к какому-либо определенному иону. [2]

Ионоселективные электроды

Ионоселективным электродом называется индикаторный или измерительный

электрод с относительно высокой специфичностью к отдельному иону или типу

ионов.

Ионселективные электроды имеют следующие достоинства: они не

оказывают воздействия на исследуемый раствор; портативны; пригодны как для

прямых определений, так и в качестве индикаторов в титриметрии. [3]

В зависимости от типа мембраны ионселективные электроды можно

разделить на следующие группы:

. твердые электроды - гомогенные, гетерогенные, на основе ионообменных

смол, стекол, осадков, моно- и поликристаллов;

. жидкостные электроды на основе жидких ионитов хелатов - нейтральные

переносчики, биологически активных веществ;

. газовые и энзимные электроды

Электроды с твердыми мембранами

Мембраны данного вида электродов представляют собой моно- или

поликристаллы труднорастворимых в воде солей. В этих мембранах обычно один

из двух составляющих соль ионов способен под действием электрического поля

перемещаться в кристаллической решетке по ее дефектам. Примерами могут

служить мембраны из солей галогенидов серебра, которые обладают ионной

проводимостью, осуществляемой ионами серебра. Поведение этих мембран, в

простейших случаях, идентично поведению соответствующих электродов второго

рода (хлорсеребряного и каломельного). Тонкая пластинка из монокристалла,

например, хлорида серебра, может быть мембраной электрода, обратимой по

отношению к иону Cl-, который закреплен в кристаллической решетке. В то же

время такой электрод обладает и катионной Ag+-функцией за счет постоянства

произведения растворимости ПРAgCl.

Кристаллические мембраны отличаются очень высокой селективностью,

превышающей селективность жидкостных электродов (с ионообменными

веществами) на несколько порядков. Это связано с тем, что селективность у

твердых кристаллических мембранных электродов достигается за счет

вакансионного механизма переноса заряда, при котором вакансии заполняются

только определенным подвижным ионом (Ag+), так как форма, размер,

распределение заряда вакансии соответствуют только определенному

подвижному иону. К электродам с твердой мембраной относятся:

лантанфторидный электрод, сульфидсеребряные электроды, галогенсеребряные

электроды, электроды на основе сульфидов (халькогенидов) некоторых

двузарядных ионов металлов, стеклянные электроды.

Наиболее совершенным и высокоселективным электродом для определения F-

ионов является монокристаллический лантанфторидный электрод. У этого

электрода F--функция сохраняется до концентрации ионов F- ~ 10-5—10-7 М,

т.е. значительно меньшей, чем рассчитанная из литературных данных о

растворимости фторида лантана. Это свойственно и другим электродам на

основе моно- и поликристаллов. Потенциал LaF3-электрода подчиняется

уравнению Нернста в интервале концентраций 100-10-6 М.. Селективность LaF3-

электрода в присутствии многих других анионов может быть охарактеризована

возможностью определения активности ионов F- при более чем 1000-кратных

избытках галоген-ионов, NO3- PO43-, HCO3- и других анионов. Существенно

мешают определению аF- только катионы, дающие комплексы с фторидами (Al3+,

Fe3+, Ce4+, Li+, Th4+) и анионы OH-. Как и для всякого электрода,

поверхность лантанфторидного электрода может изменяться в результате

реакций с веществам исследуемого раствора. Например, в растворах,

содержащих карбоксильные кислоты поверхность электрода и, соответственно,

потенциал изменяются, за счет образования смешанных солей фторида и аниона

карбоксильных кислот (поверхность можно вернуть к первоначальному

состоянию, после выдерживания электрода в буферном и чистом растворах

фторида натрия). Потенциал в концентрированных растворах устанавливается

менее чем за 0,5 с, а при низких концентрациях - до 3 мин. Стабильность

потенциала F--электрода достаточна для длительной работы без периодических

калибровок (изменение потенциала примерно ±2 мВ в неделю). Применяют

лантанфторидный электрод для определения произведений растворимости,

определение ионов F- в различных жидких средах и твердых веществах, для

анализа биологических материалов, сточных вод, минеральных удобрений,

фармацевтических средств.

Сульфидсеребряные электроды - этот вид электродов является

универсальным, с одной стороны Ag2S является основой одного из первых

гомогенных кристаллических электродов с высокой избирательностью по

отношению к ионам Ag+ и S2-, с другой стороны - Ag2S оказался

превосходной инертной матрицей для кристаллических галогенидов серебра и

многих сульфидов двузарядных металлов. Ag2S-электрод в растворах AgNO3

обладает полной Ag+-функцией в интервале концентраций 100-10-7 М Ag+.

Нижний концентрированный предел обусловлен нестабильностью растворов при

концентрации ниже 10-7 М Ag+. Однако можно измерить очень низкие

концентрации свободных ионов Ag+ в присутствии комплексообразователей,

которые создают буферность раствора относительно измеряемого иона. S2--

функция экспериментально выполняется в интервале от 10-2 до 10-7 М в

сильнощелочных сульфидных растворах. На потенциал рассматриваемого

электрода влияют Hg2+ и CN- ионы. Влияние ионов CN- обусловлено

реакцией:

6CN- + Ag2S = S2- + 2Ag(CN)32-

В обычной конструкции ионселективного электрода с твердой мембранной

внутренняя поверхность мембраны контактирует со стандартным раствором

электролита, в который погружен вспомогательный электрод, создающий

обратимый переход от ионной проводимости в электролите к электронной

проводимости в металлическом проводнике. Однако удобнее внутренний контакт

создавать с помощью твердых веществ (графит, металлы) - такие электроды

называются твердофазными.

Галогенсеребряные и некоторые другие электроды на основе серебра -

для определения концентрации галоген-ионов используют электроды на основе

солей серебра (гомогенные электроды с твердыми мембранами или

монокристаллами, принципиально не отличаются от так называемых

гетерогенных, мембраны которых содержат такие же труднорастворимые соли,

внедренные в пластическую матрицу). В данных электрода используют смеси

твердых электролитов AgХ (Х-Cl, Br, I) с Ag2S. При изготовлении AgХ- Ag2S-

электродов AgХ в виде тонкого порошка диспергирует в Ag2S. Последний из-за

значительно меньшей растворимости (чем у галогенидов серебра) выполняет

роль химически инертной матрицы. Ag2S относится к полупроводникам

нестехиометрического состава, у которых электрические характеристики

зависят от условий получения образца и его чистоты. Эти особенности Ag2S

сказываются на электропроводности мембран. Проводимость в AgХ-мембранах

осуществляется ионами Ag+ по дырочному механизму Френкеля. Мембранная фаза

имеет постоянный состав, и диффузионный потенциал внутри мембраны равен

нулю. Потенциал галоген серебряных электродов подчиняется уравнению

Нернста. Существует 3 типа AgХ- электродов: первый - основу составляет

смесь AgХ и Ag2S, такой состав устраняет недостатки AgBr- и AgCl-

электродов и позволяет получить AgI-электрод, т.к. мембраны из чистого

иодида серебра не устойчивы и легко растрескиваются (это вызвано тем, что

твердый иодид серебра в зависимости от температуры и давления может

находится в различных модификациях); второй - основу мембраны составляет

смесь монокристаллов Cl и AgBr. Для AgI-электродов применяют смесь

поликристаллических AgI и Ag2S; третий - основу мембраны составляют осадки

галогенидов серебра, внедренные в силиконовый каучук. Качество мембран

зависит от природы и количества осадка, введенного в мембрану, и от

способа образования мембранной поверхности. С AgCl-электродом можно

определять ионы Cl- в интервале концентраций 10-5- 6 М. Для AgI-электродов

нернстовская зависимость потенциала наблюдается до 10-6 М I-.

Потенциометрическое определение с галогенсеребряным электродом осложняется

присутствием в исследуемом растворе сульфида, тиосульфата и цианата или

восстановителей. Кроме галогенсеребряных электродов используют и

ионселективные CN- и SCN- - электроды. AgCl-электрод используют для

определения Cl- ионов в молоке, минеральных фосфатах, фармацевтическом

производстве, при анализе гидроокиси калия, равновесных смесей.

Электроды на основе сульфидов (халькогенидов) некоторых двузарядных

ионов металлов - мембраны для этого вида электродов получают из смесей

сульфида серебра и сульфида (халькогенида) соответствующего металла.

Наибольшее значение для практики имеют: медный, свинцовый и кадмиевый

электроды.

Медь - селективный электрод - электрод с твердой мембраной обратимый

к ионам Cu2+, впервые полученный Россом. Электрод создан на основе

сульфидов меди и серебра. Ионы Cl- (и Br-) влияют на потенциал электрода

из-за реакции, которая может протекать на поверхности мембраны:

Ag2S + Cu2+ + 2Cl- = 2AgCl + CuS

Обратимый к ионам Cu2+ электрод может быть изготовлен также из низшего

окисла меди Cu2S. Твердые Cu2+-электроды применимы для изучения систем,

содержащих окислители и восстановители. Кроме кристаллического на основе

Ag2S-CuS получены два других электрода: один с мембраной из CuS,

внедренного в медный порошок, а другой с мембраной Cu2S - внедренного в

силиконовый каучук. Медь - селективный электрод работает в интервале

концентраций - от насыщенных до 10-8 М. Интервал рН в котором

могут функционировать электроды лежит в области 2-8 и зависит от

концентрации Cu2+ ионов.

Свинец - селективный электрод - поликристаллическая мембрана

свинцового электрода получена из смеси PbS и Ag2S путем прессования.

Концентрационный интервал характерный для данного электрода - 100-10-7 М.

Высокое содержание ионов Cd2+ и Fe3+ приводит к нарушению Pb2+-функции

электрода. Халькогенидные электроды мало пригодны в прямых измерениях, но

их используют при потенциометрическом титровании свинца. Ионами, влияющими

на потенциал свинцового сульфидного (халькогенидного) электрода

гомогенного и гетерогенно типа, являются Ag+, Hg2+, Cu2+, Fe3+, S2-, I-.

Pb2+-электрод используют для определения SO42- ионов. [2] Кроме

потенциометрического титрования сульфатов Pb2+-электрод можно применять

для определения ионов C2O42-, CrO42-, Fe(CN)64-, WO42-. Pb2+-электрод

используют при определения свинца в морской воде, а так же в газах, крови.

Кадмий - селективный электрод - электрод с твердой мембраной,

селективный по отношению к ионам Cd2+, получают прессованием смеси CdS и

Ag2S. Диапазон определения ионов Cd2+ - 100-105 М Cd2+. Кадмиевый

электрод имеет ограниченную область рН, в которой он работает как строго

обратимый к ионам Cd2+. В щелочных растворах ограничение функции электрода

связано с образованием гидроокиси кадмия. Cd2+-электроды используют при

потенциометрическом титровании и для определения сульфидов в жидкостях

бумажного производства.

Стеклянные электроды - наиболее распространенные электроды. С помощью

данного вида электродов определяют рН растворов. Существуют стеклянные

электроды которые позволяют определить концентрацию ионов Na+, K+. В

основе теории стеклянного электрода лежит представление о том, что стекло

- это ионообменник, который может вступать в ионообменное взаимодействие с

раствором. Стекло при этом рассматривается как твердый электролит. Стекло,

состоящее из окислов натрия, кальция, кремния, обладает резко выраженным

специфическим сродством к ионам Н+. Вследствие этого при соприкосновении с

водными растворами в поверхностном слое стекол образуется слой, в котором

ионы Na+ оказываются почти полностью замещенными на ионы Н+. Поэтому

мембранный электрод, изготовленный из такого стекла, обладает Н+-функцией.

Страницы: 1, 2