бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Испытания термоэлектрического термометра бесплатно рефераты

1 Объект испытаний

· Термоэлектрические термометры

Для измерения температуры в металлургии наиболее широкое распространение получили термоэлектрические термометры, работающие в интервале температур от -200 до +2500 0C и выше. Данный тип устройств характеризует высокая точность и надежность, возможность использования в системах автоматического контроля и регулирования параметра, в значительной мере определяющего ход технологического процесса в металлургических агрегатах.

Сущность термоэлектрического метода заключается в возникновении ЭДС в проводнике, концы которого имеют различную температуру. Для того, чтобы измерить возникшую ЭДС, ее сравнивают с ЭДС другого проводника, образующего с первым термоэлектрическую пару AB (рисунок 2), в цепи которой потечет ток.

Результирующая термо-ЭДС (Т-ЭДС) цепи, состоящей из двух разных проводников A и B (однородных по длине), равна

или

(1)

где и - разности потенциалов проводников A и B соответственно при температурах t2 и t1, мВ.

Термо-ЭДС данной пары зависит только от температуры t1 и t2 и не зависит от размеров термоэлектродов (длины, диаметра), величин теплопроводности и удельного электросопротивления.

Для увеличения чувствительности термоэлектрического метода измерения температуры в ряде случаев применяют термобатарею: несколько последовательно включенных термопар, рабочие концы которых находятся при температуре t2, свободные при известной и постоянной температуре t1.

Принцип действия

Термопара - старейший и до сих пор наиболее распространенный в промышленности температурный датчик. Действие термопары основано на эффекте, который впервые был открыт и описан Томасом Зеебеком в 1822 г. Наиболее правильное определение этого эффекта следующее: a difference of potential will occur if a homogeneous material having mobile charges has a different temperature at each measurement contact. (Если гомогенный материал, обладающий свободными зарядами, имеет разную температуру на измерительных контактах, то между контактами возникает разность потенциалов). Для нас более привычно обычно приводимое в литературе несколько другое определение эффекта Зеебека - возникновении тока в замкнутой цепи из двух разнородных проводников при наличии градиента температур между спаями. Второе определение, очевидно, следует из первого и дает объяснение принципу работы и устройству термопары. Однако, именно первое определение дает ключ к пониманию эффекта возникновения ТЭДС не в месте спая, а по всей длине термоэлектрода, что очень важно для понимания ограничений по точности, накладываемых самой природой термоэлектричества. Поскольку генерирование ТЭДС происходит по длине термоэлектрода, то показания термопары зависят от состояния термоэлектродов в зоне максимального температурного градиента. Поэтому поверку термопар следует проводить при той же глубине погружения в среду, что и на рабочем объекте. Учет термоэлектрической неоднородности особенно важен для рабочих термопар из неблагородных металлов.

Главные преимущества термопар:

- широкий диапазон рабочих температур, это самый высокотемпературный из контактных датчиков.

- спай термопары может быть непосредственно заземлен или приведен в прямой контакт с измеряемым объектом.

- простота изготовления, надежность и прочность конструкции.

Недостатки термопар:

- необходимость контроля температуры холодных спаев. В современных конструкциях измерителей на основе термопар используется измерение температуры блока холодных спаев с помощью встроенного термистора или полупроводникового сенсора и автоматическое введение поправки к измеренной ТЭДС.

- возникновение термоэлектрической неоднородности в проводниках и, как следствие, изменение градуировочной характеристики из-за изменения состава сплава в результате коррозии и других химических процессов.

- материал электродов не является химически инертным и, при недостаточной герметичности корпуса термопары, может подвергаться влиянию агрессивных сред, атмосферы и т.д.

- на большой длине термопарных и удлинительных проводов может возникать эффект «антенны» для существующих электромагнитных полей.

- зависимость ТЭДС от температуры существенно не линейна. Это создает трудности при разработке вторичных преобразователей сигнала.

- когда жесткие требования выдвигаются к времени термической инерции термопары, и необходимо заземлять рабочий спай, следует обеспечить электрическую изоляцию преобразователя сигнала для устранения опасности возникновения утечек через землю.

Общие сведения и особенности работы

Стандартные таблицы для термоэлектрических термометров и классы допуска и диапазоны измерений приведены в ГОСТ Р 8.585-2001 «Государственная система обеспечения единства измерений. Термопары.»

Источники погрешности термопар

Принцип действия термопар и особенности преобразования и передачи сигнала приводят к следующим возможным проблемам при их эксплуатации, вызывающим ошибку в определении температуры

1 Дефекты формирования рабочего спая;

2 Возникновение термоэлектрической неоднородности по длине термоэлектродов и изменение градуировочной характеристики;

3 Электрическое шунтирование проводников изоляцией и возможное возникновение гальванического эффекта;

4 Тепловое шунтирование;

5 Электрические шумы и утечки.

Формирование спая

Существует много способов формирования рабочего спая термопары: механическое скручивание, пайка, сварка и т.д. При сварке в спай добавляется третий метал, но т.к. температуры проводников, исходящих из спая одинаковы, это не может привести к какой-либо погрешности. Проблема заключается в том, что третий метал, как правило, имеет более низкую температуру плавления и при высоких температурах спай может разорваться. Более того, может происходить загрязнение электродов чужеродным испаряющимся металлом. Поэтому рекомендуется производить сварку рабочего спая. Однако процесс сварки тоже требует особого внимания, т.к. перегрев может повредить термопарную проволоку и газ, используемый для сварки, может диффундировать в проволоку. Дефектная сварка может привести в разрыву спая при эксплуатации. В программном обеспечении, используемом для считывания и обработки сигнала термопары всегда есть специальный тест на разрыв спая.

Образование термоэлектрической неоднородности. Искажение градуировочной характеристики

Это наиболее серьезный и трудно диагностируемый источник погрешности, т.к. результат отсчета ТЭДС может показаться вполне приемлемым и в то же время быть ошибочным. Термоэлектрическая неоднородность может быть результатом диффузии примесей из окружающей атмосферы при высоких температурах, высокотемпературным отжигом или механической обработкой электродов. Она может образоваться в результате протягивания электродов, неосторожного обращения, ударов и вибраций, вызывающих напряжения в проволоке. Изменение состава сплава может наблюдаться на отдельном участке проволоки, находящейся длительное время в зоне резкого температурного градиента. Однако неоднородность влияет на изменение градуировочной характеристики только в том случае, если она попадает в зону температурного градиента при измерении. Чем больше градиент температуры, тем больше погрешность, возникающая из-за неоднородности. Один из способов уменьшения данной погрешности - сделать более плавным изменение температуры на длине термоэлектрода, например, используя металлические рукава и чехлы.

Сопротивление изоляции

Сопротивление изоляции термоэлектродов уменьшается с повышением температуры по экспоненциальному закону. При высокой температуре, в отдельных случаях, этот эффект может привести к образованию так называемого «виртуального» спая, т.е. фактического замыкания электродов в средней точке термопары. Таким образом, термопара будет измерять температуру не в области рабочего спая, а температуру в средней области. При высоких температурах следует также очень тщательно подбирать материал для изоляции, т.к. примеси и химические вещества изоляции могут проникнуть в электроды и изменить их свойства.

Гальванический эффект

Красящие вещества, применяемые в некоторых видах изоляции, могут вызвать образование электролита при попадании воды. Это может привести в гальваническому эффекту, который по силе превышает эффект Зеебека. Необходимо принимать меры для защиты термопарной проволоки от вредной атмосферы, проникновения воды и других жидкостей.

Тепловое шунтирование

Необходимо помнить, что термопара, как и любой другой контактный датчик, при введении в объект измерения меняет его температуру. Поэтому, если объект мал, термопара тоже должна иметь малые размеры. Однако термопара, изготовленная из тонкой проволоки, более подвержена эффектам загрязнения, отжига, возникновения напряжений, электрическому шунтированию. Чтобы минимизировать эти эффекты применяют удлинительные провода, которые соединяют термоэлектроды термопары с измерительным вольтметром и имеют коэффициент Зеебека близкий к коэффициенту термопары данного типа. Обычно удлинительный провод имеет больший диаметр, его сопротивление, включенное последовательно с термоэлектродом, не вызывает потерь при передаче сигнала на длинные расстояния. Кроме того, удлинительный провод проще протянуть через подводящий измерительный канал, чем тонкую термопарную проволоку. Поскольку требования к допускам удлинительных проводов установлены только в узком интервале температур, и сам провод может быть подвержен механическим повреждениям и натяжению, следует обеспечить минимальный температурный градиент вдоль провода.

Электрические шумы

Широкополосный шум может быть подавлен аналоговым фильтром. Единственный тип шума, который не может подавить система считывания и обработки сигнала - сдвиг, обусловленный утечкой постоянного тока в системе. Хотя обычно такие утечки не вызывают больших погрешностей, возможность их возникновения должна всегда приниматься во внимание и, по-возможности, предотвращаться, особенно если термоэлектроды очень малы и их сопротивление велико.

Подбор термопарной проволоки

Проволока для термопар изготавливается в соответствии со стандартом на допуска для термопар различных типов и классов. Куски проволоки, взятые из одного сертифицированного мотка, обычно имеют более близкое совпадение в значениях ТЭДС, чем куски из разных мотков, хотя абсолютное отклонение от номинальной ТЭДС может быть значительным. Если термопара изготавливается с целью получения большей точности, чем установлена стандартом, необходима проверка на термоэлектрическую неоднородность термоэлектродов и последующие меры для снижения вероятности возникновения неоднородности.

Диагностика состояния термопары при эксплуатации

Некоторые очень ценные предложения по разработке диагностических процедур были изложены в работах др. Рида (США). Три компонента предлагаемой системы: запись всех событий на объекте (event record), тест блока холодных спаев (the zone box test), отслеживание изменения сопротивления термопары (the thermocouple resistance history).

Электронная запись всех событий особенно важна, когда на объекте установлены сотни датчиков и требуется отследить ошибку в измерениях, полученных с каждого датчика. Например, если в определенный момент термопара одного типа была заменена на термопару другого типа, но по ошибке не была изменена стандартная функция преобразования, сигнал будет ложный, и только по электронным записям событий можно выяснить причину выхода из строя датчика.

Тест блока холодных спаев. Этот тест проводится для проверки работы контроллера, сканера, вольтметра и системы компенсации холодных спаев. Термопара в рабочих условиях регистрирует температуру горячего спая и показания вольтметра будут V=E(Tг-Tх). Во время тестирования мы замыкаем короткими кусками медной проволоки терминалы на блоке холодных спаев. В это время регистрируется температура холодных спаев и показания вольтметра должны быть равны V=0. Фактически это испытание тестирует все элементы измерительной системы, кроме самой термопары.

Измерение сопротивления термопары

Внезапное изменение сопротивления термопарной цепи является индикатором неполадок в работе. Если мы непрерывно будем регистрировать и проводить электронную запись сопротивления проводов каждой термопары во времени, то при внезапном изменении сопротивления, мы немедленно получим сигнал, который может быть индикатором разрыва, шунтирования изоляцией, влияния вибраций и других возможных нарушений. Так, если термопара, походящая через высокотемпературную зону и имеющая спай в более холодной зоне стала внезапно показывать 1200 °С вместо 300 °С, это может означать либо опасное повышение температуры зоны, либо выход термопары из строя и замыкание в месте повышенной температуры. Тестирование сопротивления поможет выявить причину. Сопротивление термоэлектродов изменяется с температурой, но если оно изменилось скачком, то это означает непредвиденное замыкание или разрыв. Нужно иметь ввиду, что когда термопара генерирует напряжение, то оно может вызвать существенную ошибку в измерении сопротивления. Измерение сопротивления термопары похоже на измерение сопротивления источника напряжения. Эту проблему решают с помощью технологии компенсации ТЭДС (offset compensated ohms measurement). Вольтметр сначала измеряет напряжение, генерируемое термопарой без включения источника измерительного тока, используемого при измерении сопротивления. Затем это напряжение вычитается программным способом из результирующего напряжения, измеренного при включенном источнике.

Рекомендации по работе с термопарами

Целостность и точность измерительной системы, включающей термопарный датчик, может быть повышена с помощью следующих мер:

- Использовать проволоки большого диаметра, которая, однако, не будет изменять температуру объекта измерения;

- Если необходимо использовать миниатюрную термопару из очень тонкой проволоки, следует использовать ее только в месте измерения, вне объекта следует использовать удлинительные провода;

- Избегать механических натяжений и вибраций термопарной проволоки;

- Если необходимо использовать очень длинные термопары и удлинительные провода следует соединить экран повода с экраном вольтметра и тщательно перекручивать выводы;

- По-возможности избегать резких температурных градиентов по длине термопары;

- Использовать термопару только в пределах рабочих температур, желательно с запасом;

- Использовать подходящий материал защитного чехла при работе во вредных условиях, чтобы обеспечить надежную защиты термопарной проволоки;

- Использовать удлинительные провода в их рабочем диапазоне и при минимальных градиентах температур;

- Вести электронную запись всех событий и непрерывно контролировать сопротивление термоэлектродов;

- Для дополнительного контроля и диагностики измерений температуры применяют специальные термопары с четырьмя термоэлектродами, которые позволяют проводить дополнительные измерения температуры, электрических помех, напряжения и сопротивления для контроля целостности и надежности термопар .

· Устройство термоэлектрических термометров

Термоэлектрический термометр (ТТ) - это измерительный преобразователь, чувствительный элемент которого (термопара) расположен в специальной защитной арматуре, обеспечивающий защиту термоэлектродов от механических повреждений и воздействия измеряемой среды. На рисунке 3 показана конструкция технического термоэлектрического термометра . Арматура включает защитный чехол 1, гладкий или с неподвижным штуцером 2, и головку 3, внутри которой расположено контактное устройство 4 с зажимами для соединения термоэлектродов 5 с проводами, идущими от измерительного прибора к термометру. Термоэлектроды по всей длине изолированы друг от друга и от защитной арматуры керамическими трубками (бусами) 6.

Рисунок 3

Защитные чехлы выполняются из газонепроницаемых материалов, выдерживающих высокие температуры и агрессивное воздействие среды. При температурах до 10000С применяют металлические чехлы из углеродистой или нержавеющей стали, при более высоких температурах - керамические: фарфоровые, карбофраксовые, алундовые, из диборида циркония и т. п.

В качестве термоэлектродов используется проволока диаметром 0.5 мм (благородные металлы) и до 3 мм (неблагородные металлы). Спай на рабочем конце 7 термопары образуется сваркой, пайкой или скручиванием. Последний способ используется для вольфрам-рениевых и вольфрам-молибденовых термопар.

Термоэлектрические термометры выпускаются двух типов: погружаемые, поверхностные. Промышленность изготавливает устройства различных модификаций, отличающихся по назначению и условиям эксплуатации, по материалу защитного чехла, по способу установки термометра в точке измерения, по герметичности и защищенности от действия измеряемой среды, по устойчивости к механическим воздействиям, по степени тепловой инерционности и т. п.

Страницы: 1, 2, 3, 4, 5, 6