бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Химия цвета бесплатно рефераты

Рис. 5.   Спектры  отражения металлов.

Цвет металла зависит от того, какой длины световые волны он поглощает и отражает: ко­бальт — розовый, серебро — белое, золото — желтое.

Большинство неорганических веществ, обладающих цветом, так или иначе связано с ионами металлов, а сами металлы представляют один из типов простых веществ, имеющих цвет, то, по-видимому, логично будет рассмотреть зависимость цвета металла от его структуры.

В периодической системе, начиная со II периода, метал­лы расположены во всех группах с первой по восьмую. Естественно, что характер членов этих групп меняется от одной группы к другой и от периода к периоду. Однако несмотря на большое разнообразив свойств, у металлов есть качества, присущие всем металлическим веществам без исключения. Одной из за­мечательных особенностей является наличие окрашенных соединений у всех переходных металлов. Зависимость окра­ски от наличия свободных d-орбиталей на предвнешнем уровне атомов металла можно объяснить следующим об­разом. Как известно, в d-подуровни имеется пять орбиталей. Они имеют разные, но совершенно опреде­ленные положения в пространстве. На каждой из этих пяти орбиталей может находиться в соответствии с принци­пом Паули но дна электрона. Причем если у атома (или иона) имеются пять или меньше электронов на d-подуровне, то каждый из них старается занять отдельную орбиталь. В этом случае их энергия наименьшая из всех воз­можных. Если электронов становится больше пяти, то про­исходит спаривание, сопровождающееся переходами элект­ронов. Энергия таких переходов электронов соответствует энергиям квантов видимого света. Поглощение таких кван­тов из солнечного белого света и определяет цвет Сu2+, Fe2+, Fe3+, Co2+, Ni2+, Cr3+, Mn3+, Mn4+, Mn6+, Mn7+ других окрашенных ионов переходных элементов.

Наполовину и менее заполненные внутренние электрон­ные орбитали дают простор для переходов электронов.

 

 

Атомы те же — окраска разная

На состояние ионов в растворе оказывает влияние внеш­нее поле молекул растворителя. В кристаллах твердого вещества на атом или ион действует несколько его бли­жайших соседей. Атомы и ионы в кристаллической решет­ке беспрерывно совершают колебательные движения. При этом расстояние между соседними частицами становится то меньше, то больше равновесного. Это вызывает то бо­лее сильное, то менее сильное взаимодействие их между собой, так как ядра атомов то сближаются, то удаляются друг от друга. Воздействие соседей на атом или ион при­водит к нарушению в нем распределения положительного и отрицательного заряда. Появляются два полюса в мо­лекуле (рис. 6), т. е. происходит ее поляризация.

Рис. 6.  Поляризация молеку­лы  под   действием    соседних молекул.

Если влияние полярной частицы достаточно велико, то соседний атом или ион начинает деформироваться, т. е. приобретает постоянное неравномерное распределение электронной плотности вок­руг ядра. Когда соседей до­статочно много, то в резуль­тате этого он испытывает многостороннюю поляриза­цию, приводящую к много­сторонней деформации. Она в сильно преувеличенном ви­де показана на рисунке 7. Возникающие дополнитель­ные силы стяжения между ионами сказываются на вза­имодействии атомов, состав­ляющих кристаллическую решетку. Это влияние меняет цвет вещества, если оно образует несколько типов кри­сталлов.


Рис. 7.   Многосторонняя   де­формация.

Сера может иметь раз­личный цвет от светло-жел­того до темно-коричневого в зависимости от того, какова ее кристаллическая структу­ра. Разнообразные аллотроп­ные модификации фосфора: белый, желтый, красный, ко­ричневый, фиолетовый, чер­ный и ряд других (в общей сложности 11) — обладают разными физическими и химическими качествами. Ведь эти качества, так же как и цвет, зависят от состояния электронов. Одни и те же атомы, расположенные в прост­ранстве иным образом, могут создать вещество — ди­электрик или обладающее электропроводностью. Черный фосфор по своим свойствам  напоминает графит: цветом, твердостью, устойчивостью на воздухе и некоторыми другими признаками. Только электрический ток черный фосфор проводит в гораздо меньшей степени, чем графит. Углерод являет еще один разительный пример изменения цвета и свойств в зависимости от аллотропной структуры. Это может быть прозрачный сверкающий гра­нями алмаз и графит, который можно превратить в алмаз.

Перемену цвета, вызванную изменением состояния электронов и связанную с перестройкой структуры, можно объяснить колебательным движением в кристалле. Допустим, что частицы в кристалле закреплены неподвижно. В таком случае каждая из них испытывала бы строго сим­метричное влияние (рис. 8, а). Появляющаяся деформа­ция от разных соседей компенсировала бы друг друга, В действительности же в кристалле непрерывно соверша­ются колебательные движения. Расстояния между части­цами при таких колебаниях меняются, вызывая соответ­ственно изменение распределения зарядов — поляризацию (рис. 8, б). Если поляризующее действие соседей и соб­ственная деформируемость ионов или атомов достаточны, то это скажется на состоянии электронов, которые будут уже воспринимать кванты видимого света.



Рис. 8. Влияние поляризации на положение атомов в кристалли­ческой решетке.


Если колебательные движения велики или усиливают­ся, например нагреванием, то возникающая деформация увеличивает притяжение ионов и закономерный характер колебательного движения нарушается (рис. 8, в). Проис­ходит дальнейшее сближение, а это вызывает перестройку кристаллической структуры вещества. В результате такой перестройки может оказаться, что ион окружен соседями, расположенными уже на более близком расстоянии. А ино­гда меняется и их число; одни из соседей стали ближе (три из четырех катионов на рис. 8, в), а другие дальше, чем были прежде.

Примерами образования таких  соединений,  имеющих разный цвет, являются желтая и оранжевая формы оксида свинца РЬО. Первой из них соответствует ромбическая конфигурация, а второй — тетрагональная.

Влияние структуры ни цвет проявляется и в более сложных соединениях. Так, хромат свинца РbСrO4 может быть и темно-желтым (моноклиническая кристаллическая решетка), и светло-желтым (ромбическая структура). Сле­довательно, приводящее к перемене окраски изменение пространственного расположения может происходить и с большой группой атомов. В хромате свинца это касается молекулы из шести атомов.

 

 

Молекулы бесцветны, а вещество окрашено

 

И все же в некоторых случаях цвет одного и того же вещества зависит вовсе не от структуры. Точнее, не от типа кристаллической решетки. Нет в природе таких веществ, чтобы их структура была совершенна. Человек пытается исправить эту природную «недоработку» и выращивает кристаллы, близкие к идеальным. Без таких кристаллов немыслима современная оптика. Однако природные кри­сталлы поражают разнообразием цвета и его оттенков. В этом можно убедиться, если посмотреть на кристаллы даже таких простых веществ, как встречающиеся в земле поваренная соль или карбонаты.

В окрестностях польского городка Велички есть соля­ные разработки, где обширные коридоры и огромнейшие валы, вырубленные в Плас­тах каменной соли, тянутся галереей на десятки кило­метров. В нишах по бокам галереи можно видеть фигу­ры, сделанные из соли, и удивительной формы крис­таллы. Слабо освещенные, они производят фантастическое впечатление. Иногда они окрашены в синий или фиолетовый цвет. Откуда бе­рется эта окраска в гигант­ской массе бесцветной соли? Цвет кристаллов, постро­енных из бесцветных ионов и атомов, появляется в ре­зультате нарушений идеаль­ности кристаллической решетки. Несовершенства бывают нескольких видов.



Рис. 9.  Дефекты кристалличе­ской структуры: образованно вакансии и появление атома между узлами кристалличес­кой решетки.


Во-первых, из-за неправильного расположения атомов, составляющих кристаллическую решетку (рис. 9). Атомы отсутствуют там, где они должны быть — в узлах кристал­лической решетки; возникают незанятые места — вакан­сии. Смещенные атомы могут появиться в промежутках между теми, которые сохраняют свое нормальное положе­ние. В кристаллические несовершенства включаются и крупные нарушения порядка. Большинство кристалличе­ских тел имеет мозаичное или блочное строение. Между такими блоками (зернами) правильное расположение во многих случаях нарушено. Размеры блоков чаще всего бывают от 1000 до 10000 атомных диаметров, а на их границах образуется область с неправильным расположением ато­мов. Такие несовершенства обусловливают наличие в кри­сталле центров окраски из-за того, что в этих местах нарушается нормальное взаимодействие электромагнитно­го поля, создаваемого ионами и электронами с электромаг­нитным падающим потоком квантов. Подобный тип окра­шенных соединений широко распространен в природе.

Во-вторых,   окраску   бесцветных  веществ  определяет наличие атомов посторонних элементов и случайных при­месей. Инородные атомы могут быть рассеяны по всему кристаллу или группироваться вместе. И в этом и в другом случае они искажают кристаллическую решетку. Синий или фиолетовый цвет бесцветной каменной соли возникает из за выделения под влиянием радиоактивного из­лучения металлического натрия. Иногда наряду с хлори­дом натрия в ней содержатся и частицы других солей, которые нарушают структуру так же, как металлический натрий.

Совсем недавно для всеобщего обозрения открыта Ново­афонская пещера, поражающая своими размерами. В за­лах, высота которых достигает 100 м, с потолка свеши­ваются огромные сталактиты. Навстречу им со дна пещеры в виде столбиков поднимаются сталагмиты. Порой и те и другие соединяются вместе, образуя причудливой формы колонны. Убранство залов, подобно убранству подземных дворцов Хозяйки Медной горы из сказки П. П. Бажова, сверкает разноцветием. Откуда же берется эта фантазия красок? Ведь основной составляющий компонент сталактитов и сталагмитов — кальцит, который является одной из двух кристаллических бесцветных форм карбона­та кальция СаСОз. Цвет кристаллов вызван включениями посторонних молекул и ионов, часть из которых имеет соб­ственную окраску. Ионы и атомы натрия и калия придают подземным украшениям голубой, синий или фиолетовый оттенок; рубидий и цезий красный или оранжевый. Раз­личные сочетания этих элементов образуют всю красоч­ную полигамию кристаллов, образующих сталактиты, ста­лагмиты, сталагматы.



Цвет полярных молекул


Когда катионы попадают в поле действия анионов, то возникает взаимное влияние (рис. 10). Результаты зави­сят от способности электронных оболочек ионов к дефор­мации. Эта способность обусловлена природой иона и си­лой, с которой данный ион может воздействовать на оболоч­ки соседей. Как правило, ионы малого радиуса и большого положительного заряда деформируются слабо: очень креп­ко в таком случае положительное ядро притягивает элек­троны. Деформируемость и связанная с ней поляризация невелика и в том случае, если внешняя электронная оболочка иона подобна оболоч­ке инертного газа, т. е. за­вершено ее заполнение элек­тронами.

Если молекула состоит из ионов с заполненными элект­ронными оболочками (MgO, ZnS), то возможность пере­хода электрона практически исключена, так как ему, по­просту говоря, некуда пере­ходить. Тогда из всего спект­ра видимого света молекула не отдает предпочтения ни одному участку. Такие моле­кулы не имеют окраски. В растворе они бесцветны, а в твердом состоянии белые. К такому типу красящих веществ относятся оксид цинка, оксид магния, фосфат и сульфид цинка, сульфат бария. Как видите, это все соединения элементов II группы пери­одической системы с полностью завершенными внутрен­ними электронными оболочками.

Подобные соединения прямо могут служить неорганическими красителями — пигментами. В качестве красите­лей используются такие индивидуальные соединения, как, например, белила — оксид цинка или оксид титана (IV); чернь — это одно из аллотропных состояний углерода — сажа. Цвет может появиться лишь в том случае, если кати­он с подуровнями, заполненными электронами, связан с анионом, способным к значительной поляризации, напри­мер с тяжелыми ионами галогенов, таких, как Вг- или I-, некоторыми кислородсодержащими анионами PO43-, AsO43- и целым рядом других. Соли и оксиды металлов, имеющих атомы с незаполненными оболочками, в большинстве своем обладают окраской. Ионы металла имеют примерно тот же цвет, который присущ им в водном растворе: Си2+ — голубой, Сг3+ — зеленый и т. п. Существуют многочислен­ные анионы, способные придавать окраску ионам, особен­но если это ионы металлов побочных подгрупп. Так, на­пример, желтый анион CrO42-  влияет на бесцветный катион серебра Ag+, что в результате реакции:

2Ag+ + CrO42-  → Ag2CrO4

 

образуется красный осадок хромата серебра. В подобной же реакции бесцветный ион ртути Hg2+ образует оранже­вое соединение HgCrO4. Однако, ион свинца — металла главной подгруппы IV группы, соединяясь с CrO42-,  так и оставляет желтым цвет хромата свинца РbСгO4.


Рис. 10.  Возникновение   поля­ризационного  эффекта   (а)   и усиление (б) взаимной дефор­мации ионов.

Взаимное влияние катионов и анионов позволяет варьи­ровать оттенки цвета.

Поэтому чаще всего применяются соединения перемен­ного состава: желтый крон — смесь хрома и сульфата свинца РbСгO4 • nРbSO4, изумрудная зелень - гидроксид хрома переменного состава Сг203 • nН2O (n= 1,5—2,5), ко­бальт светло-фиолетовый и фиолетовый — фосфаты кобальта, гидратированные водой Соз(РО4)2  • 8Н2О или СоNH4PО4.

Таким образом, окраска полярной молекулы зави­сит от наличия у катиона свободных электронных под­уровней, от способности катиона поляризовать анион и соответственно от способности этого аниона к поляри­зации. 


                                                                       

Связь цвети вещества с положением элементов в периодической системе

Напомним, что существуют s-, р-, d- и f-элементы. Каж­дый из этих типов имеет свои особенности при образова­нии соединений. Появляющиеся продукты не всегда обладают цветом, в ряде случаев они бесцветные или белые.

Не имеют окраски неорганические вещества, молекулы которых образованы s- и р-элементами и имеют ионы с за­полненными электронами оболочками: катионы щелочных и щелочноземельных металлов, анионы неметаллов пер­вых трех периодов. К ним примыкают соединения (в основ­ном оксиды) элементов, расположенных в периодической системе Д. И. Менделеева на условной границе металл — неметалл: сурьмы, висмута, свинца, алюминия. Из побоч­ных подгрупп белый цвет имеют соединения элементов IV группы (переходные металлы): титан и цирконий. Причем цирконий, как более металлический элемент, входит в состав веществ только в виде катиона Zr4+, а титан и как катион, и в составе аниона. Широко применяются в каче­стве белых пигментов соли титановой кислоты; титанаты магния, кальция, бария и некоторых других элементов. Состав этих соединений таков, что у кислорода и катионов элементов II группы нельзя перевести электрон из основ­ного в возбужденное состояние, так как нет свободных орбиталей, куда могли бы перейти электроны, запасшиеся энергией от светового кванта. У титана же и циркония слишком велика разница в величинах энергии между за­полненными подуровнями и вакантными. У квантов види­мого света просто не хватает энергии для возбуждения электронов.

Ионы, имеющие незавершенные оболочки, в большин­стве случаев образуют окрашенные соединения. При этом, если анион не способен к сильной поляризации, то цвет вещества определяется катионом и соответствует окраске катиона в водном. растворе: железа — желтой, меди — го­лубой и др.

У d-элементов IV периода цвет соединений определя­ется переходами электронов с одной d-орбитали на другую и переносом заряда на ион металла. Затягивая электроны с орбиталей аниона, на вакантные орбитали своих атомов, катионы хрома, марганца, железа, кобальта, никеля и не­которых других металлов придают соответствующую окраску всем своим соединениям. Этим же объясняется окраска ряда оксидов элементов с переходными свойствами (ме­таллов).

Необходимо, однако, заметить, что появление возмож­ности того или иного перехода определяется влиянием ато­мов, с которыми соприкасается атом данного d-элемента. Пять d-орбиталей занимают в молекуле несколько иное положение, чем в свободном атоме. Разница в энергиях этих орбиталей как раз соответствует энергии квантов ви­димой части электромагнитного излучения и обусловлива­ет цвет вещества, содержащего ионы Gr3+, Fe2+, Fe3+, Co2+, Ni2+, Mn4+, Mn7+. Цвет некоторых веществ, например окси­да железа (III) Fe2O3 и гидроксида железа (III) Fe(OH)3, определяется сразу двумя обстоятельствами: электронны­ми переходами с одной d-орбитали на другую и переносом заряда с аниона на катион.

Потенциалы переноса заряда зависят от межатомных, межионных, межядерных расстояний. Следовательно, и в соединениях d-элементов большую роль играет деформируемость катиона и аниона.

Элементы больших периодов, расположенные внизу групп элементов, деформируются легко. Особенно если у них имеется много внутренних незавершенных слоев или 18-электронные оболочки. Это относится как к катионам металлов, так и к анионам неметаллов. Примером, подтвер­ждающим такое поведение, может служить взаимное влия­ние ионов свинца Рb2+ и иода I-. Оба они в водном раство­ре бесцветны и раствор иодида свинца тоже не имеет окраски.

Страницы: 1, 2, 3