бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Методологически-мировоззренческие принципы преподавания физики в контексте мировой культуры бесплатно рефераты

На этом этапе эффективно задать вопрос следующего характера:

Что вы можете сказать о снежинках?

Например, кусок слюды (рис. 1) легко расслаивается в одном направлении на тонкие пластинки, а также расслаивается в одном направлении кристалл графита.


Рис.1


Следует помнить, что частицы в кристаллах плотно упакованы, так что расстояние между их центрами приблизительно равно размеру частиц. В изображении кристаллических решеток указывается только положение центров частиц.

В кристаллических телах частицы располагаются в строгом порядке, образуя пространственные периодически повторяющиеся структуры во всем объеме тела. Для наглядного представления таких структур используются пространственные кристаллические решетки, в узлах которых располагаются центры атомов или молекул данного вещества. Чаще всего кристаллическая решетка строится из ионов (положительно и отрицательно заряженных) атомов, которые входят в состав молекулы данного вещества. Например, решетка поваренной соли содержит ионы Na+ и Cl–, не объединенные попарно в молекулы NaCl. Такие кристаллы называются ионными [21].

Кристаллические решетки металлов часто имеют форму шестигранной призмы (цинк, магний), гранецентрированного куба (медь, золото) или объемно центрированного куба (железо).

Кристаллические структуры металлов имеют важную особенность. Положительно заряженные ионы металла, образующие кристаллическую решетку, удерживаются вблизи положений равновесия силами взаимодействия с «газом свободных электронов». Электронный газ образуется за счет одного или нескольких электронов, отданных каждым атомом. Свободные электроны способны блуждать по всему объему кристалла.

Третий этап

Урок, разработанный в контексте мировой культуры, позволяет учителю построить так структуру урока, что домашнее задание служит глубоким пониманием нового материала. Методика проверки может быть самой разнообразной.

Проверка домашнего задания. Опыт в домашних условиях.

Вам понадобятся кусок пластилина, стеариновая свеча и электрокамин. Поставьте пластилин и свечу на равных расстояниях от камина.

По прошествии некоторого времени часть стеарина расплавится (станет жидкостью), а часть – останется в виде твердого кусочка. Пластилин за то же время лишь немного размягчится. Еще через некоторое время весь стеарин расплавится, а пластилин – постепенно "разъедется" по поверхности стола, все более и более размягчаясь.

Учащиеся приходят самостоятельно к выводу, существуют тела, которые при плавлении не размягчаются, а из твердого состояния превращаются сразу в жидкость. Во время плавления таких тел всегда можно отделить жидкость от еще не расплавившейся (твердой) части тела. Эти тела – кристаллические. Существуют также твердые тела, которые при нагревании постепенно размягчаются, становятся все более текучими. Для таких тел невозможно указать температуру, при которой они превращаются в жидкость (плавятся). Примерами аморфных тел могут служить стекло, (рис. 11), различные затвердевшие смолы (янтарь), пластики и т.д.

Следующий этап демонстрация опыта.

В стеклянную воронку бросим кусок смолы или воска и оставим в теплой комнате. По прошествии примерно месяца окажется, что воск принял форму воронки и даже начал вытекать из нее в виде "струи" (учитель показывает заранее полученный результат выполненный им месяц назад). В противоположность кристаллам, которые почти вечно сохраняют собственную форму, аморфные тела даже при невысоких температурах обладают текучестью. Поэтому их можно рассматривать как очень густые и вязкие жидкости [2].

Никак нельзя обойтись без объяснения кристаллизации аморфных тел. Кристаллические тела могут быть монокристаллами, например, сера и поликристаллами.

Поликристаллические тел состоят из многих сросшихся между собой хаотически ориентированных маленьких кристалликов, которые называются кристаллитами. Одиночные кристаллы называют монокристаллами.

Следует объяснить, что с течением времени (несколько месяцев, лет) аморфные вещества самопроизвольно переходят в кристаллическое состояние. Например, сахарные леденцы или свежий мед, оставленные в покое в теплом месте, через несколько месяцев становятся непрозрачными. Говорят, что мед и леденцы "засахарились". Разломив леденец или зачерпнув мед ложкой, мы действительно увидим образовавшиеся кристаллики сахара.

Частицы аморфных тел непрерывно и беспорядочно колеблются. Они чаще, чем частицы кристаллов могут перескакивать с места на место. Этому способствует и то, что частицы аморфных тел расположены неодинаково плотно: между ними имеются пустоты.

Самопроизвольная кристаллизация аморфных тел свидетельствует, что кристаллическое состояние вещества является более устойчивым, чем аморфное. МКТ объясняет это так. Межмолекулярные силы притяжения-отталкивания заставляют частицы аморфного тела перескакивать преимущественно туда, где имеются пустоты. В результате возникает более упорядоченное, чем прежде расположение частиц, то есть образуется поликристалл, например, сахар. Кристаллические тела могут быть монокристаллами и поликристаллами. Поликристаллические тела состоят из многих сросшихся между собой хаотически ориентированных маленьких кристалликов, которые называются кристаллитами. Большие монокристаллы редко встречаются в природе и технике. Чаще всего кристаллические твердые тела, в том числе и те, которые получаются искусственно, являются поликристаллами.

Таким образом, учитель подводит учащихся к механическим свойствам твердого тела в частности железа. Для этого учитель обращается снова к рис. 4, объясняя изменения формы кристалла железа (четвертый этап).

Изучая структуру кристалла железа, ученые установили, что железо a – типа очень прочное и нехрупкое, такое железо называют аустенитное. Еще над этим озадачились древние кузнецы. Путем опыта кузнецы со временем получили железо со свойствами аустенитного железа. Чтобы получить такое железо при температуре 20°С, ученые предложили метод термообработки. Следующий этап – снять внутреннее напряжение (отпуск) осуществляется с помощью отжига.

Подводя итоги занятия, учитель сообщает, что вокруг нас находится множество твердых тел как природного происхождения, различные сплавы веществ, которые делятся на жаропрочные, с электропроводимостью, выдерживающие огромное давление сторонних тел. Благодаря таким знаниям человечество изобретает множество тел, которые имеют способность не только находиться на поверхности земли, но над ней (самолеты, вертолеты, здания и т.д.).

Не оставляют равнодушными студентов и школьников изделия художественного литья, слайды архитектуры старинных русских городов, ювелирных изделий, космической техники и др. при окончании изучения темы «Твердое тело».

5. Анализ истории развития понятия в связи с историей общества;

6. Выявление роли и значения данного понятия в понятийном аппарате рассматриваемой физической теории;

7. Анализ методологического понятия в свете идей эволюции физической картины мира.

Опыт показывает, что подготовка к таким занятиям длительна (20-30 часов) и трудоемка, однако это оправдывается глубиной усвоения темы и широтой взглядов на мир.

С помощью предложенной концепции поэтапного обучения физики укладываемся в один урок теоретический урок и проведение лабораторной работы – второй урок. Таким образом, остается резервное время для изучения других тем следующего раздела.

Подводя итоги урока, учитель-педагог дает учащимся разработать творческое задание для будущих учеников. При разработке учащиеся не только закрепляют полученные знания, но и развиваются как творческая личность, оказывая большую помощь учителю при разработке методического материала к уроку.

Заключение


Физика как наука имеет не только специальный, но и общечеловеческий, то есть культурный мировой аспект. Курс «Физика в контексте мировой культуры» предполагает осуществление системы мер, направленных на приоритетное развитие общекультурных компонентов в содержании образования и таким образом на формирование зрелой личности образования.

В данной дипломной работы проведен литературный обзор по поставленной проблеме. Согласно исследованиям по вопросам гуманитаризации и гуманизации сделан вывод, что с целью стимулирования творческой активности учащихся при изучения физики, необходимо делать акцент на методологически-мировоззренческие принципы и излагать при этом физику без отрыва от общекультурных ценностей (философии, истории, техники, искусства), указывать на её место в общемировой культуре. Показано также, что на уроках по физике следует подчеркивать показывать решающие влияние на научно-технический прогресс, на то что физика оказывает существенное влияние и на все стороны жизни общества, в частности на человеческую культуру. Однако в данном случае мы имеем в виду не это опосредствованное влияние физики на культуру, а влияние непосредственное, позволяющее говорить о самой физике как о компоненте культуры. Иными словами, речь идет о гуманитаризованном содержании самого предмета физики, которое связано с развитием мышления, формированием мировоззрения, воспитанием чувств. Имеется в виду органическая связь физики с развитием общественного сознания, с воспитанием определенного отношения к окружающему миру.

Во второй главе дипломной работе разработана последовательность педагогических действий, которые необходимо выполнять при обучении физике мировой культуры, а так же приведен нетрадиционный урок по физической теме, реализованный в соответствии предложенной концепцией.

Хотелось бы отметить что курс «Физика в контексте мировой культуры» может быть использован не только как отдельная дисциплина, но служить опорой для построения нетрадиционных уроков в школе и насыщенными лекциями в вузах. Данный курс предусмотрен как для гуманитарного, так и естественнонаучного профилей школы.

Серьезным моментом в освоении научно-культурного материала учениками становится подготовка ими творческих работ по избранной теме.

Опыт исследования и преподавания свидетельствует: сочетание гуманитарного процесса на уроках с усвоением научно-культурных знаний на факультативных занятиях и личным проникновением в существо заинтересовавшего учащегося вопроса при выполнении им творческой работы дает ему немало для понимания физики важного элемента мировой и собственно культуры [13].

Библиографический список

 

1.Базилевский С.А. лженауке. В: Сб. докладов всесоюзной конференции ФЕНИД-91, т. 1, Гомель, 1991. С. 157–165.

2.Бублейников Ф.Д. Физика и опыт. Просвещение, М.,1970 -325с.

3.Вскобойников В.Г.Общая металлургия: Учебник для вузов. 5-е изд., перераб. и доп. М. Металлургия, 1990.-350с.

4.Глагузова М.А. Развитие творческих способностей учащихся и их интереса к физике//Физика в школе. 1990. №3. С. 23-26.

5.Гуржий В.С. Николаенко В.Н., Чабан В.И. О роли курса «Техническое конструирование и моделирование» в образовании учителя физики. Материалы Международной заочной научно-методической конференции. Инициирование и формирование стратегических векторов развития образования. 2004.

6.Дик Ю.И., Тарасов Л.В Практические аспекты преподавания физики в школе//Физика в школе. 1988. № 2. С. 32.

7.Ефременко В., Макогина Е., Корнилова Е. Методологические принципы формирования физических понятий//Alma mater. 2002. №5. С. 20-21.

8 Железовский Б.Е. Разработка интегрированных курсов – один из путей гуманизации образования. Современные технологии в педагогической практике студентов Саратов Издательство «Научная книга» 2002 С.8.

9.Замятин А.Г. Об экспериментальных основаниях (обоснованиях) теории относительности, изложенных в статье чл.-корр. АН СССР Е.А. Александрова. В: Сб. докладов всесоюзной конференции ФЕНИД-91, т. 1, Гомель, 1991. С. 7–24.

10.Зинченко В.П., Моргунов Е.Б. Человек развивающийся: Очерки

11.Ильин В.А. История физики. М., 2003.-320с.

12.Исследования по психологии научного творчества в США. М. 1969.

13.Колин К. Будущее науки: методология познания и образовательные технологии/Alma mater. 2002. №1.

14.Косарева Л.М. Картины Вселенной в европейской культуре XVI – XVIII вв.//Историко-астрономические исследования. XXII. 1990. М.: Наука. 1990. с.74-109.

15.Кохановский В.П., Золотухина Е.В. и др. Философия для аспирантов. Ростов н/Д: “Феникс”, 2002, с. 300-319.

16.Кравченко Г.В. Принципы и сдержание воспитания достоинства человека//Классный руководитель. 2002. №5 С.125-132.

17.Крупина С.В. Об эмоционально-проблемном объяснении учебного материала//Физика в школе, № 3. 1990. С. 24-26 с. 24

18.Крылова А.Н. И. Ньютон. Математические начала натуральной философии. В собр. соч. А.Н. Крылова, т. 7, М. – Л., 1936.

19.Кудряшов П.С. Курс истории физики. М., 1982. с.7.

20.Кузырева Н.А. Технология формирования творческой личности в процессе обучения физике. ООО «Исток – С» 2005.

21.Кузьмин Б.А. Технология материалов и конструктивные материалы: Учебник для машиностроительных техникумов.2-е изд., перераб. и доп. – М.: Машиностроение, 1989.

22.Н.Лазарев. Эврика-75 13-й год издания Москва «Молодая гвардия» 1975.

23.Левина И., Сушкова Ф. С учетом реалий и новых научных идей//Учитель. 1999. № 1, С. 39-45.

24. Мичков П.П. О культуре мышления//Физика в школе, № 6. 1998. С. 50-58.

25.Мощанский В.Н.Формирование мировоззрения учащихся при изучении физики. М., 1976. С.24-25.

26.Мякишев Г.Я. Физика: Учеб. для 10 кл. сред. шк. – 2-е изд. – М.: Просвещение. 1992.

27.Николаенко В.Н. Формирование всесторонне развитой личности на занятиях по естественным дисциплинам при комплексном использовании ТСО//Тезисы докладов конференции. История, современное состояние и перспективы развития методики преподавания химии. Тобольский госпединститут им. Д.И. Менделеева, г. Тобольск, 1990.

28. Н.К.Носков. Задачи и правила делания науки.

29.Развивать у учеников интерес к знаниям и учению//Физика в школе. 1999. № 2. С. 82-87.

30.Синякин Е.В. Неизвестные факты о великих – как средство пробуждения интереса к физике//Физика в школе. 2001. №4. С. 33-35.

31.Сластенин В.А., Каширин В.П. Психология и педагогика. М.: Изд. центр “Академия”, 2003 С. 265-270.

32.Соловьев Э.Ю. Прошлое толкует нас: (Очерки по истории философии и культуры). М.: Политиздат. 1991 С. 52.

33.Спиридонов О. П. Правильно ли мы преподаем физику?//Физика в школе. 1993. № 3. С. 17.

34.Тарасов Л.В. Гуманитаризация как одно из основных направлений перестройки преподавания физики в школе//Физика в школе. 1988. № 2. С. 31.

35.Тарасов Л.В. Необходимость перестройки преподавания естественных предметов на основе интегративного – гуманитарного подхода//Физика в школе. 1989. №4. С.40-41.

36.Тарасов Л.В. Современная физика в средней школе. С.11

37.Турченко В.Н. Методолические основы российской стратегии развития образования//Педагогика. 2002. №10. С. 97.

38.Шагинян М.//Октябрь. 1959. №5. С. 147.

39.Шрейдер Ю. Наука – источник знаний и суеверий // Новый мир. 1969 №10. С.225.

40. Щербаков Р.Н. Ценностные аспекты обучения и воспитания на уроках физики. М., 1998 С.. 64-65.

41.Щербаков Р.Н. ученые о преподавании физики Физика в школе. 1997. №4. С.18-23.

42.Физика в школе. 1992. №3-4; 1993 №3

43.Щербаков Р.Н. Физика в контексте мировой культуры//Физика в школе. 1998. №1. С.46.

44.Щербаков Р.Н. Ценностные аспекты развития науки//М.,1990.

45.Щербаков Р.Н. Ценностные ориентации физического образования//Педагогика. 2000. №9.

46.Щербаков Р.Н. Физическое образование и культура//Советская педагогика. 1991. №12.

47.Щукина Г.И. Роль деятельности в учебном процессе. М., “Просвещение”, 1986. С. 19-20


Страницы: 1, 2, 3, 4, 5, 6