бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Методика изучения элементов математического моделирования в курсе математики 5-6 классов бесплатно рефераты

Полный перебор можно провести, рассматривая последовательно все значения х от 1 до 9 и подбирая в каждом случае соответствующее значение y от 0 до 9. Однако этот перебор можно сократить, если заметить, что правая часть равенства больше 66. Значит, и левая его часть, то есть задуманное число больше 66. Поэтому неизвестное число х не меньше 6, и можно рассматривать только четыре значения х – от 6 до 9.

При х = 6 наше равенство имеет вид 60 + y = 6y + 66, а этого быть не может, так как левая часть получилась меньше правой при любых значениях y от 0 до 9.

При х = 7 имеем 70 + y = 7y + 66. Если мы от каждой части этого равенства отнимем одно и то же число y, то получим 70 = 6y + 66, откуда 6y = 4, что для натурального числа не возможно.

При х = 8 имеем равенство 80 + y = 8y + 66. Снова, вычитая из каждой части y, получим, 80 = 7y +66, 7y = 14, y = 2. Таким образом, для чисел х = 8 и y = 2 равенство выполняется, и число 82 удовлетворяет условию задачи:

82 = 8 · 2 + 66.

Следует обратить внимание учащихся, что нельзя считать задачу полностью решенной, поскольку перебор еще не закончен, и среди не рассмотренных случаев могут найтись решения.

Выполняя аналогичные преобразования, имеем при х = 9:

90 + y = 9y + 66,

90 = 8y +66,

8y = 24,

y = 3.

Показывая учащимся, что получилось еще одно решение, число 93, которое удовлетворяет 93 = 9 · 3 + 66, мы подчеркиваем важность полного перебора.


Авторы также советуют проводить перебор с помощью таблицы:

X

Уравнение

Упрощенное уравнение

Y

6

60 + y = 6y + 66

 

невозможно

7

70 + y = 7y + 66

6y = 4

невозможно

8

80 + y = 8y + 66

7y = 14

y = 2

9

90 + y = 9y + 66

8y = 24

y = 3


После того, как произведен полный перебор, важно научить школьников формулировать ответ в соответствии вопросу исходной задачи. В данном случае ответ будет таков: задумано либо число 82, либо 93.

К методу проб и ошибок и к методу перебора авторы еще раз возвращаются уже в 6 классе (§ 3, глава 3, [15]).

В 6 классе продолжается обучение методу математического моделирования. При изучении темы «Решение уравнений» рассматриваются различные по сюжету задачи, которые решаются с помощью уравнений. Но прежде чем приступить к решению задач, авторы учебника пытаются дать ответ на вопрос: «Для чего решают задачи?» и приходят к выводу, что, решая задачи, мы учимся строить математические модели реальных ситуаций. Далее выделяются три этапа математического моделирования:

1)     построение модели;

2)     работа с моделью;

3)     практический вывод.

Распространенным видом математических моделей являются уравнения. В соответствии с этапами моделирования решение задач с помощью уравнений состоит также из трех этапов:

1)     составление уравнения;

2)     решение уравнения;

3)     ответ на вопрос задачи.

Учащиеся обучаются выбирать переменные, составлять уравнения, решать их и анализировать результат.

Система задач, приведенная в учебниках [11 – 15] позволяет достаточно полно раскрыть методы исследования математических моделей, большое внимание уделяется решению задач с помощью уравнений, так как уравнения – это основной вид моделей, изучаемых в 5 – 6 классах. На основе этих упражнений учащиеся должны научиться понимать ценность решения сюжетных задач, видеть их практическую значимость, а также понимать значение математической модели, уметь строить ее, искать наиболее рациональный способ ее исследования и правильно делать вывод о проделанной работе, в том числе правильно формулировать ответ на задачу.

 

2.3. Анализ учебников Г. В. Дорофеева, Л. Г. Петерсон «Математика-5»,  «Математика-6» с точки зрения наличия задач для формирования умений, характерных для математического моделирования


Известно, что процесс мате­матического моделирования осуществляется в три этапа:

1) формали­зация;

2) решение внутри модели;

3) интерпрета­ция.

Следует отметить, что в школе больше внимания уделяется работе над вторым этапом моделирования, в то время как форма­лизация и интерпретация остаются недостаточно раскрытыми. Необходимо организовать обучение уча­щихся элементам моделирования, относящимся ко всем трем эта­пам. Важным средством обучения элементам моде­лирования, относящимся к этапам формализации и интерпретации, являются сюжетные задачи, но этап формализации при решении школьных сюжетных задач оказывается представлен слишком узко. Учащимся, как правило, сразу предъяв­ляется словесная модель задачи, поэтому представления о характе­ре отражения математикой явлений, описываемых в задачах, часто оказываются весьма примитивными, то есть нет условий для содержательного раскрытия деятельности, проходящей на этом этапе математического моделирования.  Поэтому надо искать пути содержательного раскрытия и конкретизации этапов форма­лизации и интерпретации математического моделирования. Уже в 5 – 6 классах целесообразно использовать задачи, которые позволяют учить школьников действиям, характерным для этапов формализации и интерпретации.

Моделирование включает в себя большое число составных элементов, поэтому большую роль в успешности работы по математическому моделированию играет выявление элементов математического моделирования. В. А. Стукалов [28] выявляет следующие элементы:

1)     замена исходных терминов выбранными математическими эквивалентами;

2)     оценка полноты исходной информации и введению при необходимости недостающих числовых данных;

3)     выбор точности числовых значений, соответствующей смыслу задачи;

4)     оценка возможности получения числовых данных для решения задачи на практике.

На основе перечисленных элементов математического моделирования, характерных для этапов формализации и интерпретации, можно выделить умения, которыми должны овладеть учащиеся для успешного освоения методом математического моделирования:

1)     умение заменять исходные термины математическими эквивалентами;

2)     умение оценивать полноту исходной информации;

3)     умение выбирать точность числовых значений;

4)     умение оценивать возможность получения числовых данных для решения задачи.

Проанализируем учебники [11 – 15] Г. В. Дорофеева, Л. Г. Петерсон с точки зрения наличия задач, применяемых для формирования у учащихся 5 – 6 классов выделенных умений.

Выполнение действия замены исходных терминов выбранными математическими эквивалентами основывается прежде всего на жизненном опыте учащихся, то есть знании терминов, встречающихся в быту или при изучении других предметов, которые могут быть заменены математическими понятиями и отношениями. Из этого следует, что в системе задач школьных учебников должно быть больше задач, содержащих термины из различных научных областей, но не требующих длительного и громоздкого объяснения их сущности. Кроме этого, задачи расширяют словарный запас учащихся, знакомят с новыми интересными фактами из разных наук, вооружают учащихся навыками самостоятельной работы, способствуют сознательному применению имеющихся знаний к жизни, знакомят их с новыми приемами решения, развивают математическое мышление и практическую смекалку.

Обучение замене исходных терминов может происходить при формировании понятий. В анализируемых учебниках [11 – 15] такими математическими эквивалентами являются понятия «прямоугольник», в частности, «квадрат», «прямоугольный параллелепипед» (в частном случае «куб»), «окружность», «сфера». В заданиях, предложенных авторами учебника, всегда наряду с исходным термином указывается его математический эквивалент, что по нашему мнению является целесообразным. В тексте учебника встречаются следующие задачи.

Понятие «прямоугольник»

·        Площадь баскетбольной площадки прямоугольной формы а м2, а длина 20 м. Какова ее ширина? (Cм. № 16 (1), [11]).

·        На рисунке показан план земельного участка и указаны его размеры. Найди площадь этого участка, и выразили ее в арах. Какова длина прямоугольника, имеющего такую же площадь и ширину 45 м? (Cм. № 57, [11]).








·        Переведи условие задачи на математический язык:
Под строительную площадку отвели прямоугольный участок, длина которого на 25 м больше его ширины. При утверждении плана застройки длину участка увеличили на 5 м, а ширину – на 4 м, в результате площадь участка увеличилась на 300 м2. Какова площадь образовавшейся строительной площадки? (Cм. № 271 (2), [12]).

·        Построй математическую модель задачи и найди ответ методом перебора:
Прямоугольный газон обнесен изгородью, длина которой 30 м. Площадь газона 56 м2. Найди длины сторон газона, если известно, что они выражаются натуральными числами (см. № 333(3), [11]).

 Понятие «параллелепипед»

Прямоугольный параллелепипед является математическим эквивалентом «аквариума», «печи», «ящика», «бассейна». Например.

·        Из фанеры требуется сделать открытый ящик, имеющий форму прямоугольного параллелепипеда с измерениями 40 см, 20 см и 15 см. Сколько фанеры потребуется для изготовления ящика? Какова будет его вместимость? (Cм. № 272, [11]).

·        Из жести сделали бак без крышки. Он имеет форму куба с длиной ребра 8 дм. Бак надо покрасить снаружи и изнутри. Какую площадь надо покрасить? Какова вместимость бака? (Cм. № 712, [11]).

·        Чтобы сделать бассейн, в земле выкопали котлован в форме прямоугольного параллелепипеда длиной 25 м, шириной 6 м и глубиной 3 м. Сколько кубических метров земли пришлось вынуть? (Cм. № 280 (1), [11]).

·        Имеется два аквариума с измерениями 45´32´50 см и 50´32´45 см.

а) На изготовление какого из двух аквариумов потребовалось больше стекла?

б) Аквариумы заполнили водой так, что уровень воды в первом аквариуме ниже верхнего края на 10 см, а во втором – на 5 см. В каком аквариуме больше воды? (Cм. № 547, [15]).

Понятия «окружность» и «круг»

При изучении окружности, круга и их свойств в учебнике используются задачи, в которых используются такие термины как «окружность колеса», «обороты колеса», «арена цирка», «циферблат часов», «беговая дорожка», «экватор Земли».

·        Великий древнегреческий математик Архимед (III в. до н.э.) установил, что длина окружности примерно в 3 раза больше ее диаметра. Пользуясь этим результатом, реши задачу: Какова длина беговой дорожки ипподрома, имеющей форму круга радиусом  км? (Cм. № 307(1), [12]).

·        Длина экватора Земли равна примерно 40000 км, а ее диаметр составляет  длины экватора. Чему равен диаметр Земли? (Cм. № 488, [12]).

·        Сколько оборотов сделает колесо на участке пути в 1,2 км, если диаметр колеса равен 0,8 м? Число p округли до целых (см. № 549 (2), [15]).

·        Чему равна площадь циферблата часов, если длина минутной стрелки равна 4,5 см. Число p округли до целых (см. № 566 (а), [15]).

·        Арена цирка имеет длину 40,8 м. Найди диаметр и площадь арены. Число p округли до целых (см. № 737, [15]).

Также к этой группе относятся задачи:

5 класс, часть 1, [11]: №№ 102 (3), 142 (5), 280 (1), 716,  753, 791, 800;

5 класс, часть 2, [12]: №№ 269 (5), 271 (1), 307, 352 (3), 379 (1), 380 (2);

6 класс, часть 1, [13]: №№ 56 (а);

6 класс, часть 3, [15]: №№ 341, 342, 547, 549 (2,4), 562, 566.

Также при обучении действию замены исходных терминов выбранными математическими эквивалентами применяются задачи, в которых требуется замена одной единицы измерения другой более мелкой и наоборот. Таких задач в учебниках очень много, но в основном в них требуется переводить километры в метры, метры в сантиметры, минуты в часы (№№ (5 класс, часть 1, [11]) 146 (1,2,4), 162 (2), 340 (1), 392, 406, 408, 504, 561, 581, 679, 752. 764, 786, 797, 798; №№  44, 56, 127 (3), 221, 228, 616 (2), 769 (2), 901, 992, 1065, 1067 (5 класс, часть 2, [12]); №№ 189 (2), 190 (2), 191 (2), 198, 199, 201, 209, 210, 212, 223, 233, 247, 305, 306, 334 (6 класс, часть 1, [13]); №№ 44, 49, 125,203, 204, 292, 293 (1), 322, 372, 373, 551 (6 класс, часть 2, [14]); №№ 116, 130 (а), 132,133, 154, 195, 223, 228, 304, 433-436, 444, 465, 466, 467, 499, 563, 633, 667, 678-680, 683, 700, 706, 717, 720, 727, 728, 738, 764, 767 (б) (6 класс, часть 3, [15])), что не вызывает больших сложностей у школьников. Например.

·        Чтобы связать шарф длиной 1,4 м, нужно 350 г шерсти. Сколько шерсти потребуется, чтобы связать шарф такой же ширины длиной 180 см? (Cм. № 225 (1), [14]).

·        Подводная лодка, идя со скоростью 15,6 км/ч, пришла к месту назначения за 3 ч 45 мин. С какой скоростью она должна была идти, чтобы пройти весь путь на 45 мин быстрее (см. № 227 (1), [14]).

Часто на практике используются такие единицы времени, как неделя, декада, квартал, век. В учебниках недостаточно задач, в которых название единиц измерения включено в сюжет задачи и требуется заменить одну единицу измерения другой в соответствии с условием. В таких задачах математическим эквивалентом будет являться число более мелких единиц измерения.

·        Средняя температура воздуха за неделю равна 18,6°, а за шесть дней без воскресенья – 18,4°. Какой была температура воздуха в воскресенье? (Cм. № 285 (2), [13]).

Мы считаем, что необходимо рассматривать больше задач, в которых требуется перевод единиц измерения, не водящих в известные системы мер, чем их приведено в учебниках [11 – 15].

При обучении действию оценки полноты исходной информации и введения при необходимости недостающих числовых данных необходимо учитывать компоненты, которые могут быть в условии этих задач: сюжет (объекты), величины, их характеризующие, значения этих величин. При этом можно выделить следующие типы задач, представленные в таблице [19].


сюжет

величины

значения

а)

+

+

-

б)

+

-

+

в)

-

+

+

г)

-

Страницы: 1, 2, 3, 4, 5, 6, 7