бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Инверсия плоскости в комплексно сопряженных координатах бесплатно рефераты

Инверсия плоскости в комплексно сопряженных координатах

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования
Вятский государственный гуманитарный университет

Математический факультет

Кафедра алгебры и геометрии

Выпускная квалификационная работа

Инверсия плоскости

в комплексно сопряженных координатах

Выполнила: студентка V курса

математического факультета

Дмитриенко Надежда Александровна

Научный руководитель:

старший преподаватель кафедры

алгебры и геометрии

Александр Николаевич Суворов

Рецензент:

Допущена к защите в государственной аттестационной комиссии

«___»__________2005 г.     Зав. кафедрой                                В.М. Вечтомов

«___»___________2005 г.     Декан факультета                        В.И. Варанкина



Киров

2005

Содержание

Введение........................................................................................................... 3

Глава 1. Основные положения теории инверсии............................................ 4

1.1. Общие сведения о комплексной плоскости.......................................... 4

1.2. Определение инверсии – симметрии относительно окружности......... 5

1.3. Формула инверсии в комплексно сопряженных координатах............ 11

1.4. Неподвижные точки и окружность инверсии..................................... 11

1.5. Образы прямых и окружностей при обобщенной инверсии.............. 12

1.6. Свойства обобщенной инверсии......................................................... 19

Глава 2. Применение инверсии при решении задач

и доказательстве теорем.................................................................. 30

2.1. Применение инверсии при решении задач на построение.................. 30

2.2. Применение инверсии при доказательстве.......................................... 41

Заключение..................................................................................................... 43

Библиографический список........................................................................... 44



Введение

В наш век современных технологий так и хочется привлечь компьютер для решения задач, в частности, геометрических. Было бы замечательно, если бы от пользователя требовалось только занести в программу нужные данные, а последняя сама бы все рассчитала и выдала, к примеру, радиус и центр искомой окружности. Но вся проблема в том, что программа может работать только с координатами. И есть смысл перевода наиболее эффективных с точки зрения решения задач преобразований, в число которых входит и инверсия, на язык координат. Наиболее просто это получается на комплексной плоскости. Изучению преобразования инверсии комплексной плоскости и посвящена эта дипломная работа.

Цель работы состоит в следующем: обобщить и систематизировать основные факты об инверсии комплексной плоскости и показать применение этого преобразования  при решении задач и доказательстве теорем.

Поставленная цель предполагала решение следующих задач:

·        вывод комплексной формулы инверсии;

·        доказательство основных свойств инверсии на комплексной плоскости;

·        решение нескольких задач при помощи инверсии комплексной плоскости;

·        доказательство ряда теорем при помощи инверсии комплексной плоскости.

Оказалось, что не так много специальных работ по теме. Инверсия комплексной плоскости оказалась крайне слабо освещена в литературе по сравнению с инверсией евклидовой плоскости. Поступали следующим образом: брали известный факт из евклидовой плоскости, а потом доказывали его методом комплексно сопряженных координат. Чаще всего такие доказательства были понятнее и короче, чем исходные.

Глава 1

Основные положения теории инверсии

1.1. Общие сведения о комплексной плоскости. Зададим на плоскости прямоугольную декартову систему координат 0xy. Тогда каждому комплексному числу z, представленному в алгебраической форме , можно однозначно поставить в соответствие точку М плоскости с координатами . Комплексное число z называют комплексной координатой соответствующей точки М и пишут: .

Следовательно, множество точек евклидовой плоскости находится во взаимно однозначном соответствии с множеством комплексных чисел. Эту плоскость называют плоскостью комплексных чисел.

Все необходимые сведения об этой плоскости очень хорошо даны в книге Я. П. Понарина [3]. Здесь приведем лишь некоторые формулы, взятые из того же источника, использованные в работе.

Расстояние между двумя точками с координатами а и b равно .

Уравнение прямой в канонической форме: , .

Уравнение окружности с центром в точке s и радиусом r: . Также часто используют запись , , , где центр , радиус .

Скалярное произведение векторов: .

Коллинеарность трех точек с координатами а, b и с: .

Критерий коллинеарности векторов: .

Расстояние от точки с координатой z0 до прямой , : .

Критерий параллельности двух прямых  и , заданных в канонической форме: .

Критерий перпендикулярности двух прямых  и , заданных в канонической форме: .

Двойное отношение четырех точек плоскости с координатами а, b, с и d: ; аргумент w равен ориентированному углу между окружностями abc и abd.

Критерий принадлежности четырех точек одной окружности или прямой: .

Критерий ортогональности окружностей ,  и , : .

Параллельный перенос на вектор с координатой r: .

Гомотетия с центром s и коэффициентом s: , .

Осевая симметрия с осью симметрии , где : .

Центральная симметрия с центром : .

1.2. Определение инверсии – симметрии относительно окружности.[1]

Определение 1. Углом между двумя окружностями называется угол между касательными к окружностям в точке их пересечения.

Если окружности не имеют общих точек, то угол между ними не определен.

Определение 2. Углом между окружностью S и прямой l называется угол между прямой l и касательной к окружности S в точке пересечения этой окружности с l.

Опять же, если прямая и окружность не имеют общих точек, то угол между ними не определен.

Из определения 2 следует, что окружности, центры которых лежат на данной прямой l, и только эти окружности, перпендикулярны к прямой l.

Теорема 1. Все окружности, перпендикулярные прямой l и проходящие через точку А, проходят и через точку В, симметричную точке А относительно прямой l.

□ Рассмотрим произвольную окружность с центром на прямой l, проходящую через точку А. Введем систему координат таким образом, что прямая l является действительной осью, а начало координат располагается в центре нашей окружности, и радиус ее равен 1.

Действительная ось имеет уравнение , и формула осевой симметрии относительно l будет . Окружность имеет уравнение .

Если точка А имеет координату а, то симметричная ей точка В будет иметь координату . Докажем, что она тоже лежит на окружности.

Действительно, поскольку А ей принадлежит, то , что и означает принадлежность точки В() этой окружности. ■

Если А не лежит на действительной оси, то больше общих точек у пучка окружностей, проходящих через А и перпендикулярных l, нет. Если  бы была еще общая точка С, то рассматриваемые окружности проходили бы через точки А, В и С, то есть все совпадали бы.

Если А лежит на действительной оси, то у окружностей также больше нет общих точек, поскольку центр их лежит на этой оси, и если есть еще одна общая точка В (не лежащая не действительной оси, иначе окружности банально совпадут), то есть еще одна общая точка – симметричная ей, и у окружностей есть три общие точки, то есть они все совпадут, что невозможно.

Значит, если окружности перпендикулярны прямой l и проходят через точку А, и точка В симметрична точке А относительно прямой l (точки А и В могут совпадать), то это единственные общие точки этих окружностей.

Поэтому можно дать такое определение симметрии относительно прямой.

Определение 3. Точки А и В называются симметричными относительно прямой l, если все окружности, перпендикулярные прямой l и проходящие через точку А, проходят и через точку В.

Введем теперь понятие симметрии относительно окружности. Докажем сначала следующую теорему.

Теорема 2. Все окружности, перпендикулярные данной окружности Σ и проходящие через данную точку А, не лежащую на Σ, проходят одновременно и через некоторую точку В, отличную от точки А

□ Рассмотрим некоторую окружность w, удовлетворяющую нашим условиям.

Введем систему координат таким образом, что начало координат располагается в центре окружности Σ и радиус ее равен 1, а точка А лежит на действительной оси.

Тогда Σ задается уравнением , w задается уравнением , где s – координата центра, r – радиус. Перпендикулярность окружностей дает равенство . Раз А лежит на w, то верно , а с учетом предыдущего равенства .

Точка А, по условию, не лежит на окружности Σ, и А лежит на действительной оси, поэтому  и , то есть , откуда . Последнее число, очевидно, тоже является действительным. Тогда  докажем, что точка с координатой  лежит на w, то есть верно . Но это равносильно , или , что верно. Значит, точка с координатой  лежит на w. Так как она отлична от точки А, а окружность w бралась произвольно, то мы нашли другую общую точку всех наших окружностей, что и требовалось. ■

Заметим, что точка А не может совпадать с центром окружности Σ, поскольку тогда касательная к w будет иметь с последней две общие точки, что невозможно.

Естественно, что других общих точек у окружностей, перпендикулярных окружности Σ и проходящих через точку А, не лежащую на Σ, нет, поскольку тогда пучок этих окружностей проходил бы через три точки, то есть все окружности бы совпадали.

Заметим также, что точки с координатами 0, а и  коллинеарны. Две последние точки лежат по одну сторону от центра Σ. Причем если А лежит внутри окружности Σ, то В – вне ее, и наоборот. Также произведение расстояний от этих точек до центра окружности постоянно и равно действительному числу – квадрату радиуса данной окружности.

Если А лежит на Σ, то других общих точек у пучка таких окружностей нет. Действительно, если бы была еще одна точка, не лежащая на Σ, то по теореме была бы к тому же общей и не совпадающая с ней точка, не лежащая на окружности, то есть не совпадающая с А. Тогда у окружностей три общих точки и они все совпадут, что невозможно. Если же еще одна общая точка  окружностей лежит на Σ, то можно поступить так. Точка А лежит на Σ, поэтому  или . Но мы всегда можем перенаправить действительную ось в противоположную сторону, поэтому будем считать, что . Тогда из верного равенства  получаем, что . Так как В лежит на w, то верно , но В лежит и на Σ, тогда последнее равенство запишется как . Получаем систему  Û  Û .

Так как , то и левая часть первого условия не должна равняться нулю. Значит, из первого условия можно смело находить центр w. Но тогда все окружности пучка совпадут, так как радиус окружностей находится как расстояние , что невозможно.

Также заметим, что и в этом случае квадрат расстояния от точки А до центра окружности равен квадрату радиуса данной окружности.

Теперь становится естественным следующее определение:

Определение 4. Точка А называется симметричной точке В относительно окружности Σ, если каждая окружность, проходящая через А и перпендикулярная Σ, проходит через точку В.

Для каждой точки А существует только одна ей симметричная. Причем, очевидно, что если А лежит на Σ, то у нее нет отличных от нее симметричных точек, она симметрична сама себе. Также очевидно, что если А совпадает с центром окружности симметрии, то у нее нет симметричной ей точки.

Еще ясно, что произведение расстояний от центра данной окружности до симметричных точек равно квадрату радиуса этой окружности.

Если точка А симметрична точке В относительно окружности Σ, то и точка В симметрична точке А относительно окружности Σ. Это позволяет говорить о точках, симметричных относительно окружности. Совокупность всех точек, симметричных точкам некоторой фигуры F относительно окружности Σ, образует фигуру F’, симметричную фигуре F относительно окружности Σ.

Симметрия относительно прямой является предельным случаем симметрии относительно окружности, так как прямую можно рассматривать как окружность бесконечного радиуса.

Симметрия относительно окружности называется также инверсией; в этом случае окружность, относительно которой производится симметрия, называется окружностью инверсии, центр этой окружности – центром инверсии, а квадрат ее радиуса – степенью инверсии.

Инверсию можно еще определить и так:

Определение 5. Инверсией плоскости с центром в точке S и степенью инверсии k называется преобразование, которое всякую точку М плоскости, отличную от S, отображает в такую точку М’, что точка М’ лежит на луче SM и произведение .

Докажем равносильность определений 4 и 5.

4Þ5. Вспомним, что при доказательстве теоремы 2 и далее в рассуждениях мы пришли к факту, что симметричные относительно окружности  точки лежат на одной прямой с центром окружности Σ и по одну сторону от него, причем произведение их расстояний до центра этой окружности равно постоянному действительному числу – квадрату радиуса окружности. Это было показано для каждой точки, отличной от центра окружности.

5Þ4. Проведем окружность с центром в точке S и радиусом . Нам дано, что . Но любая окружность, перпендикулярная проведенной и проходящая через точку М, не лежащую на проведенной окружности, проходит и через точку М’, мы это показали ранее. Значит, действительно, точки М и М’ симметричны в смысле определения 4.

Чтобы это было действительно преобразование, допускают, что точка S отображается в бесконечно удаленную точку, и наоборот (в данном случае нам удобнее мыслить бесконечно удаленную область как одну точку).

Определение 5 менее геометрично, чем предыдущее, но обладает преимуществом большей простоты. Исходя из этого определения, инверсию иногда еще называют преобразованием обратных радиусов. С этим определением связано также название «инверсия» (от латинского слова inversio – обращение).

Очевидно, слова «точка М’ лежит на луче SM и произведение » можно с успехом заменить словами «точки S, M и М’ коллинеарны и скалярное произведение векторов ». Здесь k всегда положительно. Но иногда полезно рассмотреть преобразование, которое переводит точку M в М’ так, что и точки S, M и М’ коллинеарны, но M и М’ лежат по разные стороны от точки S. Тогда, очевидно, k будет отрицательным. Такое преобразование называют инверсией с центром в точке S и отрицательной степенью. Здесь также допускают, что центр инверсии переходит в бесконечно удаленную область, и наоборот.

Вообще, говоря об инверсии, имеют в виду обычно инверсию с положительной степенью. Если знак степени инверсии может быть любым, то такое преобразование называют обобщенной инверсией. Его определение будет таким.

Определение 6. Обобщенной инверсией плоскости с центром в точке S и степенью инверсии k называется преобразование, которое всякую точку М плоскости, отличную от S, отображает в такую точку М’, что точки S, M и М’ коллинеарны и скалярное произведение векторов . При этом считают, что S переходит в бесконечно удаленную область, и наоборот.

Это преобразование инволютивное, поскольку точки М и М’ входят в формулу  равноправно, а для центра инверсии и бесконечно удаленной области все очевидно.

1.3. Формула инверсии в комплексно сопряженных координатах. Найдем формулу обобщенной инверсии при задании точек комплексными числами. Пусть точкам S, M и М’ соответствуют комплексные числа s, z и z’.

Страницы: 1, 2, 3