Жиры
Жиры
| |
| |
|Пермский военный институт ВВ МВД РФ |
|Кафедра общенаучных дисциплин |
| |
| |
| |
| |
| |
| |
|Курсовая работа по химии |
|Тема: Жиры |
|Выполнил: бывший ст. преподаватель ПВИ ВВ МВД РФ подполковник в отставке |
|Овечкин А.В. для курсанта 1 курса факультета тыла N |
|Научный руководитель: ст. преподаватель Перевозчикова С.А. |
|Дата защиты «7 » июня 2003 г. |
|Оценка Отлично |
|(подпись науч. руков.) |
|Заказать реферат a_ov@mail.ru |
| |
|Пермь – 2003 г. |
| |
Содержание
1. Жиры, определение, физико-химические свойства.
2. Липиды, важнейшие классы липидов.
3. Липопротеиды.
4. Животные жиры, состав и свойства, получение, роль в питании.
5. Масла растительные.
6. Производные жиров: мыла, классификация, получение.
7. Жировой обмен.
8. Литература.
Жиры, органические соединения, полные сложные эфиры глицерина
(триглицериды) и одноосновных жирных кислот; входят в класс липидов. Наряду
с углеводами и белками Ж. — один из главных компонентов клеток животных,
растений и микроорганизмов. Строение Ж. отвечает общей формуле:
CH2-O-CO-R’
I
CH-О-CO-R’’
I
CH2-O-CO-R’’’,
где R’, R’’ и R’’’ — радикалы жирных кислот. Все известные природные
Ж. содержат в своём составе три различных кислотных радикала, имеющих
неразветвлённую структуру и, как правило, чётное число атомов углерода. Из
насыщенных жирных кислот в молекуле Ж. чаще всего встречаются стеариновая и
пальмитиновая кислоты, ненасыщенные жирные кислоты представлены в основном
олеиновой, линолевой и линоленовой кислотами. Физико-химические и
химические свойства Ж. в значительной мере определяются соотношением
входящих в их состав насыщенных и ненасыщенных жирных кислот.
Ж. нерастворимы в воде, хорошо растворимы в органических
растворителях, но обычно плохо растворимы в спирте. При обработке
перегретым паром, минеральными кислотами или щёлочью Ж. подвергаются
гидролизу (омылению) с образованием глицерина и жирных кислот или их солей
образуя мыла. При сильном взбалтывании с водой образуют эмульсии. Примером
стойкой эмульсии Ж. в воде является молоко. Эмульгирование жиров в
кишечнике (необходимое условие их всасывания) осуществляется солями жёлчных
кислот.
Природные Ж. подразделяют на жиры животные и растительные
( масла жирные).
В организме Ж. — основной источник энергии. Энергетическая ценность
Ж. в 2 с лишним раза выше, чем углеводов. Ж., входящие в состав большинства
мембранных образований клетки и субклеточных органелл, выполняют важные
структурные функции. Благодаря крайне низкой теплопроводности Ж.,
откладываемый в подкожной жировой клетчатке, служит термоизолятором,
предохраняющим организм от потери тепла, что особенно важно для морских
теплокровных животных (китов, тюленей и др.). Вместе с тем жировые
отложения обеспечивают известную эластичность кожи. Содержание Ж. в
организме человека и животных сильно варьирует. В некоторых случаях (при
сильном ожирении, а также у зимнеспящих животных перед залеганием в спячку)
содержание Ж. в организме достигает 50%. Особенно высоко содержание Ж. у с.-
х. животных при их специальном откорме. В организме животных различают Ж.
запасные (откладываются в подкожной жировой клетчатке и в сальниках) и
протоплазматические (входят в состав протоплазмы в виде комплексов с
белками, называемые липопротеидами). При голодании, а также при
недостаточном питании в организме исчезает запасной Ж., процентное же
содержание в тканях протоплазматических Ж. остаётся почти без изменений
даже в случаях крайнего истощения организма. Запасный Ж. легко извлекается
из жировой ткани органическими растворителями. Протоплазматические Ж.
удаётся извлечь органическими растворителями только после предварительной
обработки тканей, приводящей к денатурации белков и распаду их комплексов с
Ж.
В растениях Ж. содержатся в сравнительно небольших количествах.
Исключение составляют масличные растения, семена которых отличаются высоким
содержанием Ж.
Липиды (от греч. lнpos — жир), жироподобные вещества, входящие в
состав всех живых клеток и играющие важную роль в жизненных процессах.
Будучи одним из основных компонентов биологических мембран, Л. влияют на
проницаемость клеток и активность многих ферментов, участвуют в передаче
нервного импульса, в мышечном сокращении, создании межклеточных контактов,
в иммунохимических процессах. Др. функции Л. — образование энергетического
резерва и создание защитных водоотталкивающих и термоизоляционных покровов
у животных и растений, а также защита различных органов от механических
воздействий.
Большинство Л. — производные высших жирных кислот, спиртов или
альдегидов. В зависимости от химического состава Л. подразделяют на
несколько классов (см. схему). Простые Л. включают вещества, молекулы
которых состоят только ив остатков жирных кислот (или альдегидов) и
спиртов, к ним относятся жиры (триглицериды и др. нейтральные глицериды),
воски (эфиры жирных кислот и жирных спиртов) и диольные Л. (эфиры жирных
кислот и этиленгликоля или др. двухатомных спиртов). Сложные Л. включают
производные ортофосфорной кислоты (фосфолипиды) и Л., содержащие остатки
сахаров (гликолипиды). Молекулы сложных Л. содержат также остатки
многоатомных спиртов — глицерина (глицеринфосфатиды) или сфингозина
(сфинголипиды). К фосфатидам относятся лецитины, кефалины,
полиглицерофосфатиды, фосфатидилинозит, сфингомиелины и др.; к гликолипидам
— гликозилдиглицериды, цереброзиды, ганглиозиды (сфинголипиды, содержащие
остатки сиаловых кислот). К Л. относят также некоторые вещества, не
являющиеся производными жирных кислот, — стерины, убихиноны, некоторые
терпены. Химические и физические свойства Л. определяются наличием в их
молекулах как полярных группировок ( —COOH, —OH, —NH2 и др.), так и
неполярных углеводородных цепей. Благодаря такому строению большинство Л.
является поверхностно-активными веществами, умеренно растворимыми в
неполярных растворителях (петролейном эфире, бензоле и др.) и очень мало
растворимыми в воде.
В организме Л. подвергаются ферментативному гидролизу под влиянием
липаз. Освобождающиеся при этом жирные кислоты активируются взаимодействием
с аденозинфосфорными кислотами (главным образом с АТФ) и коферментом А и
затем окисляются. Наиболее распространённый путь окисления состоит из ряда
последовательных отщеплений двууглеродных фрагментов (так называемое ?-
окисление). Выделяющаяся при этом энергия используется для образования АТФ.
В клетках многих Л. присутствуют в виде комплексов с белками
(липопротеидов) и могут быть выделены лишь после их разрушения (например,
этиловым или метиловым спиртом). Исследование извлечённых Л. обычно
начинают с их разделения на классы с помощью хроматографии. Каждый класс Л.
— смесь многих близких по строению веществ, имеющих одну и ту же полярную
группировку и различающихся составом жирных кислот. Выделенные Л.
подвергают химическому или ферментативному гидролизу. Освободившиеся жирные
кислоты анализируют методом газожидкостной хроматографии, остальные
соединения — с помощью тонкослойной или бумажной хроматографии. Для
установления структуры продуктов гидролитического расщепления Л. применяют
также масс-спектрометрию, ядерный магнитный резонанс и др. методы физико-
химического анализа.
[pic]
Липопротеиды (от греч. lнpos — жир и протеиды), липопротеины,
комплексы белков и липидов. Представлены в растительных и животных
организмах в составе всех биологических мембран, пластинчатых структур (в
миелиновой оболочке нервов, в хлоропластах растений, в рецепторных клетках
сетчатки глаза) и в свободном виде в плазме крови (откуда впервые выделены
в 1929). Л. различаются по химическому строению и соотношению липидных и
белковых компонентов. По скорости оседания при центрифугировании Л.
подразделяют на 4 главных класса: 1) Л. высокой плотности (52% белка и 48%
липидов, в основном фосфолипидов); 2) Л. низкой плотности (21% белка и 79%
липидов, главным образом холестерина); очень низкой плотности (9% белка и
91% липидов, в основном триглицеридов); 4) хиломикроны (1% белка и 99%
триглицеридов). Полагают, что структура Л. мицеллярная (белок связан с
липид-холестериновым комплексом за счёт гидрофобного взаимодействия) либо
аналогична молекулярным соединениям белков с липидами (молекулы
фосфолипидов включены в изгибы полипептидных цепей белковых субъединиц).
Исследования Л. осложнены неустойчивостью комплексов липид — белок и
трудностью их выделения в природной форме.
Жиры животные, природные продукты, получаемые из жировых тканей
животных; представляют собой смесь триглицеридов высших насыщенных или
ненасыщенных жирных кислот, состав и структура которых определяют основные
физические и химические свойства Ж. ж. При преобладании насыщенных кислот
Ж. ж. имеют твёрдую консистенцию и сравнительно высокую температуру
плавления (см. табл.); такие жиры содержатся в тканях наземных животных
(например, говяжий и бараний жиры). Жидкие Ж. ж. входят в состав тканей
морских млекопитающих и рыб, а также костей наземных животных. Характерная
особенность жиров морских млекопитающих и рыб — наличие в них триглицеридов
высоконепредельных жирных кислот (с 4, 5 и 6 двойными связями). Йодное
число у этих жиров 150—200. Особое место среди Ж. ж. занимает молочный жир,
которого в масле коровьем до 81—82,5%; в коровьем молоке содержится
2,7—6,0% молочного жира. В состав молочного жира входит до 32% олеиновой,
24% пальмитиновой, 10% миристиновой, 9% стеариновой и др. кислоты (общее
содержание их достигает 98%).
Кроме триглицеридов, Ж. ж. содержат глицерин, фосфатиды (лецитин),
стерины (холестерин), липохромы — красящие вещества (каротин и ксантофил),
витамины А, Е и F. Витамином А особенно богаты жиры из печени морских
млекопитающих и рыб. В молочном жире присутствуют, кроме того, витамины К и
D. Под действием воды, водяного пара, кислот и ферментов (липазы) Ж. ж.
легко подвергаются гидролизу с образованием свободных кислот и глицерина;
при действии щелочей из жиров образуются мыла.
В организме Ж. ж. играют роль резервного материала, используемого
при ухудшении питания, и защищают внутренние органы от холода и
механических воздействий.
Ж. ж. находят широкое применение прежде всего в качестве продуктов
питания. Важные пищевые жиры — говяжий, бараний и свиной — получают из
жировых тканей рогатого скота и свиней. Из тканей морских млекопитающих и
рыб приготовляют пищевые, медицинские, ветеринарные (кормовые) и
технические жиры. Пищевые жиры, перерабатываемые путём гидрогенизации на
маргарин, производят из жировых тканей усатых китов (сейвалы, финвалы и
др.). Медицинские жиры, содержащие витамин А и используемые как лечебный и
профилактический препарат, получают из печени тресковых рыб: трески, пикши,
сайры и др. Ветеринарные жиры предназначаются для подкормки с.-х. животных
и птиц и приготовляются из тканевых и печёночных жиров рыб и морских
млекопитающих. Технические жиры используют в лёгкой, химической,
парфюмерной промышленности и в др. отраслях народного хозяйства для
обработки кож, выработки моющих и пеногасительных средств и различных
кремов и помад. Технический рыбий жир получают преимущественно в процессе
производства кормовой муки из различных отходов (головы, кости,
внутренности, плавники), из малоценных в пищевом отношении и некондиционных
рыб, из некондиционного сырья, получаемого при переработке усатых китов и
ластоногих; к техническим относятся также жиры, получаемые из зубатых китов
(главным образом кашалотов) и характеризующиеся большим содержанием восков,
что делает их непригодными для пищевых целей.
Ж. ж. выделяют из жировой ткани и отделяют от белков и влаги
посредством нагревания выше температуры плавления. Вытопку жиров из
измельченной ткани производят в открытых котлах, а из неизмельчённой — в
автоклавах под давлением. Для вытопки пищевых и др. жиров широко применяют
установки непрерывного действия АВЖ (отечественного производства), «Титан»
(Дания), «Де-Лаваль» (Швеция) и др. Длительность процесса с момента
загрузки жирового сырья до получения готового продукта составляет на этих
установках 7—10 мин. Вытопка Ж. ж. на непрерывнопоточной установке АВЖ,
широко применяемой в мясной промышленности, включает следующие стадии (см.
схему). Сырьё загружают в воронку центробежной машины 1, где оно
измельчается ножами и нагревается паром до температуры 85—90°С. Полученная
жиромасса поступает через питательный бачок 2 в горизонтальную центрифугу 3
для отделения белков от жира и воды. Жир с водой через центробежную машину
4 направляется в питательный бачок 5 и затем в сепараторы 6 (на схеме
показан один) на 2—3-кратную очистку. Прозрачный жир посредством
центробежной машины 7 подаётся в приёмник 8, из которого поступает в
шнековый аппарат 9 на охлаждение до температуры 35—42 °С, а затем на
розлив упаковку в тару.
Состав и свойства жиров домашних животных
|Показатель |Говяжий |Бараний |Свиной |
|Содержание | | | |
|к-т,% | | | |
|Насыщенные: | | | |
|лауриновые С12Н24О2 |— |0,1 |— |
|миристиновая С14Н28О2|3,0—3,3 |3,0 |1,1 |
|пальмитиновая |24,0—29,2 |23,6 |30,4 |
|С16Н32О2 | | | |
|стеариновая С18Н32О2 |21,0—24,9 |31,7 |17,9 |
|арахиновая С20Н40О2 |0,4 |— |— |
|Ненасыщенные: | | | |
|тетрадеценовая |0,4—0,6 |0,2 |0,1 |
|С14Н26О2 | | | |
|гексадеценовая |2,4—2,7 |1,3 |1,5 |
|С16Н30О2 | | | |
|олеиновая С18Н34О2 |41,1—41,8 |35,4 |41,2 |
|линолевая С18Н32О2 |1,8 |3,9 |5,7 |
|линоленовая С18Н34О2 |0,4 |— |0,8 |
|арахидоновая С20Н32О2|0,2 |0,8 |2,1 |
|Плотность при 15°С, |939—953 |937—961 |915—923 |
|кг/м3 | | | |
|Темп-ра плавления, °С|42—52 |44—55 |30—44 |
|Темп-ра застывания, |34—38 |34—45 |22—32 |
|°С | | | |
|Иодное число |32—47 |35—46 |46—66 |
|Калорийность, дж/кг |3980 *104 |3956 *104 |3981 *104 |
|(ккал /100г) |(950,5) |(944,9) |(950,9) |
Страницы: 1, 2
|