бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Жидкие растворы бесплатно рефераты

Жидкие растворы

СПб ГИТМО (ТУ)

Кафедра: Физической химии,

волокнистой и интегральной оптики.

Реферат

Жидкие растворы.

Студент: Тулякова М. 156гр.

Преподаватель: Успенская М.В.

Санкт- Петербург

2002г

Оглавление:

Вступление 3

I. Определение раствора. 4

II. Процесс растворения 5

III. Классификации растворов. 7

IV. Способы выражения состава растворов 8

V. Растворимость. Зависимость растворимости от температуры. 10

VI. Теплоты растворения и разбавления. 12

VII.Давление пара растворов. Состав пара растворов. 13

VIII Неидеальные растворы. 15

IX.Активность и коэффициент активности. 16

X.Кристаллизация растворов. 17

XI Кипение растворов. 18

XII Осмос. 18

Список литературы 20

Вступление

Растворы находят широкое применение в самых различных областях

практики. Категории растворов относятся и природный раствор воды, и такие

материалы, как сырая нефть и различные нефтепродукты-бензины, керосин,

вазелин, парафин, смазочные масла, жидкие сплавы металлов, расплавленные

смеси силикатов смеси органических растворителей, различные водноспиртовые

смеси и др.

Во второй половине прошлого века существовало две противоположных точки

зрения на процесс растворения. Для первой точки зрения характерно

рассмотрение процесса растворения как явления химического, для второго -

как физического. В химических теориях предполагалось, что растворенное

вещество и растворитель химически взаимодействуют между собой. С физической

точки зрения растворенное вещество можно рассматривать, как находящееся в

газообразном состоянии и применять к нему законы кинетической теории газов.

Каждая из этих теорий была разработана и внесла свой вклад в создание

современной теории растворов, в которой принимаются во внимание и

химические, и физические факторы.

В развитии учения о растворах выдающаяся роль принадлежит работам Д.И.

Менделеева. Он рассматривал растворы как неустойчивые химические соединения

постоянного состава, находящиеся в состоянии частичной диссоциации. Этим

было положено начало химической теории растворов в противовес физическим

теориям, игнорировавшим значение химического взаимодействия.

Общей теории растворов - теории, которая давала бы возможность

определять свойства раствора по известным свойствам компонентов в чистом

состоянии и известному составу раствора, - в настоящее время еще нет.

Только для растворов очень разбавленных (в пределе бесконечно разбавленных)

удалось еще в 80-х годах прошлого века создать начала количественной

теории, дающей возможность определять некоторые свойства растворов по

известной их концентрации. В таких растворах молекулы растворенного

вещества разобщены друг от другого большим количеством молекул

растворителя. Вследствие этого их взаимодействие не проявляется в заметной

степени.

Определение раствора.

Растворы - однородная многокомпонентная система, состоящая из

растворителя, растворённых веществ и продуктов их взаимодействия,

относительные количества которых могут изменяться в широких пределах. Этот

термин может относиться к любому агрегатному состоянию системы. По

агрегатному состоянию растворы могут быть жидкими (морская вода),

газообразными (смеси азота с аммиаком) или твёрдыми (многие сплавы

металлов).

Газообразные растворы обычно представляют собой смеси газов и реже –

растворы жидкостей или твердых тел в газах. Газы способны смешиваться во

всех отношениях не при любых условиях. При высоких температурах и давлении

наблюдается неполное смешение газов с образованием двух газообразных фаз,

находящихся в равновесии.

Твердые растворы образуются кристаллизации жидких расплавов или при

растворении газов в твердых веществах. Различают твердые растворы

замещения, внедрения и вычитания.

Твердые растворы замещения, которые образуются при сохранении структуры

кристаллической решетки растворителя являются наиболее распространенными.

При образовании твердых растворов замещения в узлах кристаллической решетки

данного вещества атомы, молекулы и ионы замещаются частицами другого

вещества. Образование таких растворов возможно, если оба вещества близки по

кристаллическим свойствам и размерам частиц. По приближенному правилу В.Юм-

Розери твердые растворы замещения образуются в тех случаях, когда размеры

двух частиц отличаются не более чем на 14-15%. Устойчивыми являются твердые

растворы замещения любого состава.

Твердые растворы внедрения получаются путем внедрения частиц одного

вещества в междоузлия кристаллической решетки другого вещества

(растворителя). Растворы внедрения образуются в том случае, когда размеры

частиц внедряемого вещества меньше размеров частиц растворителя. Такие

растворы обычно возникают при растворении растворов неметаллов в металлах.

При внедрении новых частиц в промежутки между атомами металла происходит

увеличение напряжения в кристаллической решетке, в связи с такие растворы

образуются сравнительно редко.

Твердые растворы вычитания встречаются значительно реже. Они получаются

при выпадении некоторых атомов из кристаллической ячейки, в связи с чем эти

растворы иногда называются твердыми растворами с дефектной решеткой.

Наиболее часто встречаются жидкие растворы. В моем реферате речь пойдет

преимущественно о жидких растворах.

Растворы занимают промежуточное место между химическими соединениями и

механическими смесями. Однородность растворов делает их схожими с

химическими соединениями, так же на химическое взаимодействие между

компонентами растворов указывает выделение теплоты при растворении

некоторых веществ. Растворы отличаются от химических соединений тем, что

состав взаимодействующих веществ может изменяться в широких пределах. В

свойствах раствора можно обнаружить многие свойства компонентов его

составляющих, что характерно для механических соединений.

Процесс растворения

Процесс растворения кристалла в жидкости происходит так. Когда кристалл

соли, например, хлорида натрия попадает в воду, то распложенные на его

поверхности ионы притягивают полярные молекулы воды (ион-дипольное

взаимодействие). К ионам натрия молекулы притягиваются своими

отрицательными полюсами, а к ионам хлора положительными. Но если ионы

протягивают к себе молекулы воды, то и молекулы воды притягивают к себе

ионы. В то же время притянутые молекулы воды испытывают толчки со стороны

непритянутых молекул воды, находящихся в тепловом движении. И этих толчков,

а так же тепловых колебаний самих ионов достаточно для того, чтобы ион

хлора или натрия отделился от кристалла и перешел в раствор. Вслед за

первым слоем ионов в раствор переходит следующий слой и таким образом идет

постепенное растворение кристалла. Перешедшие в раствор ионы остаются

связанными с молекулами воды и образуют гидраты ионов. Гидратация –

основная причина диссоциации . Она отчасти затрудняет их обратное

соединение (ассоциацию). Под гидратацией обычно понимают совокупность

энергетических процессов и структурных изменений, происходящих в растворе

при взаимодействии частиц растворенного вещества с водой. Слой частиц воды,

непосредственно присоединенных к центральной частице растворенного вещества

образует вокруг нее гдратную оболочку. Наименьшее число молекул

растворителя, удерживаемое около частицы растворенного вещества называется

координатным числом гидратации. Координатное число определить трудно, оно

зависит от природы растворенного вещества и растворителя.

Доказательством того, что компоненты раствора химически взаимодействуют

друг с другом, служит тот факт, что многие вещества выделяются из водных

растворов в виде кристаллов, содержащих кристаллизованную воду – гидратов;

причем на каждую молекулу растворенного вещества приходится определенное

число молекул воды. Как правило, гидраты – нестойкие соединения, во многих

случаях они разлагаются уже при выпаривании растворов. Но иногда гидраты

так прочны, что при выделении растворенного вещества из раствора вода

входит в состав его кристаллов. Вещества, в состав которых входят молекулы

воды называются кристаллогидратами, а содержащаяся в них вода -

кристаллизованной. Прочность связи между гидратами и кристаллизованной

водой различна. Многие из них теряют кристаллизованную воду уже при

комнатной температуре, для некоторых требуется значительное нагревание, а

от кристаллогидрата алюминия, например, не удается удалить воду никакими

способами.

Состав кристаллогидратов принято изображать формулами, показывающими,

какое количество кристаллизованной воды содержит кристаллогидрат. Например,

кристаллогидрат сульфата натрия, содержащий на один моль Na2SO4 10 молей

воды выражается формулой Na2SO4(10H2O.

Иначе протекает диссоциация молекул, которые обладают полярной связью.

Молекулы воды, притянувшиеся к концам полярной молекулы (диполь-дипольное

взаимодействие), вызывают расхождение ее полюсов – поляризуют молекулу.

Такая поляризация в сочетании с колебательным движением атомов в самой

молекуле, а так же беспорядочное тепловое движение окружающих ее молекул

воды приводит к распаду полярной молекулы на ионы. Как и в случае

растворения кристалла с ионной связью эти ионы гидрируются.

Гидрированные ионы содержат как постоянное, так и переменное количество

молекул воды, это количество зависит от концентрации и других условий.

Гидрат постоянного состава образует ион водорода H+, он называется ионом

гидроксония. Ион гидроксония благодаря очень маленьким размерам обладает

электростатическим полем большой электороотицательности. Он не имеет

электронной оболочки и поэтому не испытывает отталкивания от электронных

оболочек других атомов. Поэтому в растворах ион гидроксония существует

исключительно в виде объединений с молекулами воды. Самый прочный комплекс

образуется с одной молекулой воды, который так же окружается гидратной

оболочкой из других молекул.

Классификации растворов.

Существует несколько способов классификации растворов. Так, основываясь

на величине электрической проводимости, различают растворы электролитов и

неэлектролитов. Можно классифицировать растворы по агрегатному состоянию

системы и тех частиц, из которых она состоит.

Возможна классификация раствора по количеству растворенного вещества в

нем присутствующего. Если молекулярные или ионные частицы, распределённые в

жидком растворе, присутствуют в нём в таком количестве, что при данных

условиях не происходит дальнейшего растворения вещества, раствор называется

насыщенным. (Например, если поместить 50 г NaCl в 100 г H2O, то при 20єC

растворится только 36 г соли). Насыщенным называется раствор, который

находится в динамическом равновесии с избытком растворённого вещества.

Поместив в 100 г воды при 20єC меньше 36 г NaCl мы получим ненасыщенный

раствор. При нагревании смеси соли с водой до 100?C произойдёт растворение

39,8 г NaCl в 100 г воды. Если теперь удалить из раствора нерастворившуюся

соль, а раствор осторожно охладить до 20єC, избыточное количество соли не

всегда выпадает в осадок. В этом случае мы имеем дело с перенасыщенным

раствором. Перенасыщенные растворы очень неустойчивы. Помешивание,

встряхивание, добавление крупинок соли может вызвать кристаллизацию избытка

соли и переход в насыщенное устойчивое состояние.

С точки термодинамики можно различать идеальные растворы и

неидеальные (или реальные). В идеальных растворах, к которым реальные могут

только приближаться, внутренняя энергия каждого компонента не зависит от

концентрации. Компоненты в идеальном растворе смешиваются, как идеальные

газы; предполагается, что сил взаимодействия между частицами нет, и

вещества смешиваются без выделения или поглощения теплоты.

Растворы, не удовлетворяющие указанным условиям, относят к реальным

растворам. Чем меньше концентрация раствора, тем ближе он к идеальному

раствору. Растворы изотопов одного элемента в другом почти точно

подчиняются законам идеальных растворов. Однородные смеси неполярных

веществ (углеводородов) близки к идеальным растворам при всех

концентрациях. Растворы полярных веществ, особенно электролитов,

обнаруживают заметное отклонение от идеальности уже при концентрациях,

отвечающих мольной доле порядка одной миллионной.

Способы выражения состава растворов

Любой раствор состоит из растворителя и растворенного вещества. В

случае растворов газов или твердых веществ в жидкостях растворителем обычно

считается жидкость, а растворенным веществом – растворенный газ или твердое

вещество, независимо от их относительного количественного содержания. Когда

компоненты обладают ограниченной смешиваемостью, то растворителем является

тот, прибавление которого к раствору возможно в неограниченном количестве

без нарушения гомогенности. Если компоненты обладают неограниченной

растворимостью, то можно выделить два случая. При значительном различии

содержания компонентов растворителем считается вещество, присутствующее в

относительно большем количестве. Понятия растворитель и растворенное

вещество теряют смысл, когда речь идет о смесях с примерно равными или

близкими концентрациями компонентов. В этом случае состав раствора может

выражаться различными способами – как с помощью безразмерных единиц – долей

или процентов, так и через размерные величины – концентрации. На практике

используют более десятка способов выражения концентрации. Вот некоторые из

них:

1. Массовая доля растворенного вещества.

Отношение массы растворенного вещества B к массе растворителя.

[pic] или [pic]

2. Мольная доля растворенного вещества.

Отношение количества растворенного вещества к суммарному количеству

всех веществ, составляющих раствор, включая растворитель

[pic] или [pic]

Мольная доля указывает на число молей данного вещества в одном моле

раствора. Сумма мольных долей всех составных веществ равна единице:[pic]

3. Объемная доля растворенного вещества:

Отношение объема растворенного вещества к сумме объемов вещества и

растворителя.

[pic] или [pic]

4. Молярная концентрация (или молярность).

Определяется отношением числа молей растворенного вещества к объему

раствора, выраженному в литрах. Физический смысл молярной концентрации

заключается в том, что она указывает на число молей вещества содержащегося

в 1 литре его раствора.

[pic]

5. Нормальная концентрация (или нормальность).

Определяется отношением числа эквивалентов растворенного вещества B к

объему раствора, выраженному в литрах. Физический смысл нормальной

концентрации заключается в том, что она указывает на число эквивалентов

растворенного вещества, содержащегося в 1 литре раствора.

[pic]

6. Моляльная концентрация (или моляльность).

Определяется отношением числа молей растворенного вещества к массе

растворителя. Физический смысл заключается в том, что она показывает,

сколько молей вещества растворено в 1 кг (1000г) растворителя.

[pic]

Страницы: 1, 2