бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Ионоселективные электроды бесплатно рефераты

Ионоселективные электроды

МИНИСТЕРСТОВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО

ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Химический факультет

кафедра физической химии

РЕФЕРАТ

Ионоселективные электроды

выполнил:

студент 2 курса

4 группы

Юденко Валерий

проверил:

Введенский Александр Викторович

Воронеж 2000

Содержание

Введение 3

История создания ионоселективных электродов 4

Ионоселективные электроды 4

Электроды с твердыми мембранами 4

Лантанфторидный электрод 4

Сульфидсеребряные электроды 5

Галогенсеребряные и некоторые другие электроды на основе

серебра 6

Электроды на основе сульфидов некоторых двузарядных металлов

7

Стеклянные электроды 7

Электроды с жидкими мембранами 8

Электроды на основе жидких катионитов 9

Электроды на основе жидких анионитов 9

Нитрат - селективный электрод 10

Газовые электроды 11

Энзимные электроды 12

Заключение 13

Литература 14

Введение

Для определения состава и свойств различных соединений и растворов

используются химические, физические и физико-химические методы анализа. В

некоторых случаях появляется необходимость определять концентрацию

различных ионов в растворе. Целью данной работы является рассмотрение

ионоселективных электродов: их разнообразие, изготовление, принцип

действия, область применения данных электродов, а также более подробное

рассмотрение свойств мембранного электрода, его особенности.

История ионоселективных электродов

Ионометрия в настоящее время представляет собой достаточно широкую

область науки и техники и играет не мало важную роль в аналитической

химии. Основная задача ионометрии - изучение и разработка различного рода

ионоселективных электродов.

История развития мембранных электродов связана с исследованиями

физиологических процессов. В середине ХIХ века физиологи обнаружили

возникновение между отдельными частицами организмов разности электрических

потенциалов. Для понимая действия сложных биологических мембран химиками в

конце ХIХ были созданы простейшие модели мембран.

В 1890 году Оствальд воспользовался понятием полупроницаемой мембраны

для создания модели биологической мембраны и показал, что значение

разности потенциалов в такой мембране можно считать предельным в случае

жидкостного потенциала, когда подвижность одного из ионов равна нулю.

В начале ХХ столетия была обнаружена способность стеклянной мембраны

реагировать на изменение концентрации ионов водорода. Первые основные

исследования потенциалов стеклянных мембран проведены Кремером и Габером.

Ими же созданы и первые прототипы стеклянных и других электродов с

твердыми и жидкими мембранами.

Первые стеклянные электроды для практического измерения рН в

растворах были предложены в 20-х годах Юзом, Долом и Мак-Иннесом,

Никольским и Шульцем. В 50-х годах появились стеклянные электроды с

функциями ионов щелочных металлов, их которых наибольшее практическое

значение имеет натриевый стеклянный электрод.

Жидкие мембраны, содержащие растворенный ионит, впервые изучали

Соллнер и Шин. Однако у этих мембран отсутствовала достаточная

селективность по отношению к какому-либо определенному иону. [2]

Ионоселективные электроды

Ионоселективным электродом называется индикаторный или измерительный

электрод с относительно высокой специфичностью к отдельному иону или типу

ионов.

Ионселективные электроды имеют следующие достоинства: они не

оказывают воздействия на исследуемый раствор; портативны; пригодны как для

прямых определений, так и в качестве индикаторов в титриметрии. [3]

В зависимости от типа мембраны ионселективные электроды можно

разделить на следующие группы:

. твердые электроды - гомогенные, гетерогенные, на основе ионообменных

смол, стекол, осадков, моно- и поликристаллов;

. жидкостные электроды на основе жидких ионитов хелатов - нейтральные

переносчики, биологически активных веществ;

. газовые и энзимные электроды

Электроды с твердыми мембранами

Мембраны данного вида электродов представляют собой моно- или

поликристаллы труднорастворимых в воде солей. В этих мембранах обычно один

из двух составляющих соль ионов способен под действием электрического поля

перемещаться в кристаллической решетке по ее дефектам. Примерами могут

служить мембраны из солей галогенидов серебра, которые обладают ионной

проводимостью, осуществляемой ионами серебра. Поведение этих мембран, в

простейших случаях, идентично поведению соответствующих электродов второго

рода (хлорсеребряного и каломельного). Тонкая пластинка из монокристалла,

например, хлорида серебра, может быть мембраной электрода, обратимой по

отношению к иону Cl-, который закреплен в кристаллической решетке. В то же

время такой электрод обладает и катионной Ag+-функцией за счет постоянства

произведения растворимости ПРAgCl.

Кристаллические мембраны отличаются очень высокой селективностью,

превышающей селективность жидкостных электродов (с ионообменными

веществами) на несколько порядков. Это связано с тем, что селективность у

твердых кристаллических мембранных электродов достигается за счет

вакансионного механизма переноса заряда, при котором вакансии заполняются

только определенным подвижным ионом (Ag+), так как форма, размер,

распределение заряда вакансии соответствуют только определенному

подвижному иону. К электродам с твердой мембраной относятся:

лантанфторидный электрод, сульфидсеребряные электроды, галогенсеребряные

электроды, электроды на основе сульфидов (халькогенидов) некоторых

двузарядных ионов металлов, стеклянные электроды.

Наиболее совершенным и высокоселективным электродом для определения F-

ионов является монокристаллический лантанфторидный электрод. У этого

электрода F--функция сохраняется до концентрации ионов F- ~ 10-5—10-7 М,

т.е. значительно меньшей, чем рассчитанная из литературных данных о

растворимости фторида лантана. Это свойственно и другим электродам на

основе моно- и поликристаллов. Потенциал LaF3-электрода подчиняется

уравнению Нернста в интервале концентраций 100-10-6 М.. Селективность LaF3-

электрода в присутствии многих других анионов может быть охарактеризована

возможностью определения активности ионов F- при более чем 1000-кратных

избытках галоген-ионов, NO3- PO43-, HCO3- и других анионов. Существенно

мешают определению аF- только катионы, дающие комплексы с фторидами (Al3+,

Fe3+, Ce4+, Li+, Th4+) и анионы OH-. Как и для всякого электрода,

поверхность лантанфторидного электрода может изменяться в результате

реакций с веществам исследуемого раствора. Например, в растворах,

содержащих карбоксильные кислоты поверхность электрода и, соответственно,

потенциал изменяются, за счет образования смешанных солей фторида и аниона

карбоксильных кислот (поверхность можно вернуть к первоначальному

состоянию, после выдерживания электрода в буферном и чистом растворах

фторида натрия). Потенциал в концентрированных растворах устанавливается

менее чем за 0,5 с, а при низких концентрациях - до 3 мин. Стабильность

потенциала F--электрода достаточна для длительной работы без периодических

калибровок (изменение потенциала примерно ±2 мВ в неделю). Применяют

лантанфторидный электрод для определения произведений растворимости,

определение ионов F- в различных жидких средах и твердых веществах, для

анализа биологических материалов, сточных вод, минеральных удобрений,

фармацевтических средств.

Сульфидсеребряные электроды - этот вид электродов является

универсальным, с одной стороны Ag2S является основой одного из первых

гомогенных кристаллических электродов с высокой избирательностью по

отношению к ионам Ag+ и S2-, с другой стороны - Ag2S оказался

превосходной инертной матрицей для кристаллических галогенидов серебра и

многих сульфидов двузарядных металлов. Ag2S-электрод в растворах AgNO3

обладает полной Ag+-функцией в интервале концентраций 100-10-7 М Ag+.

Нижний концентрированный предел обусловлен нестабильностью растворов при

концентрации ниже 10-7 М Ag+. Однако можно измерить очень низкие

концентрации свободных ионов Ag+ в присутствии комплексообразователей,

которые создают буферность раствора относительно измеряемого иона. S2--

функция экспериментально выполняется в интервале от 10-2 до 10-7 М в

сильнощелочных сульфидных растворах. На потенциал рассматриваемого

электрода влияют Hg2+ и CN- ионы. Влияние ионов CN- обусловлено

реакцией:

6CN- + Ag2S = S2- + 2Ag(CN)32-

В обычной конструкции ионселективного электрода с твердой мембранной

внутренняя поверхность мембраны контактирует со стандартным раствором

электролита, в который погружен вспомогательный электрод, создающий

обратимый переход от ионной проводимости в электролите к электронной

проводимости в металлическом проводнике. Однако удобнее внутренний контакт

создавать с помощью твердых веществ (графит, металлы) - такие электроды

называются твердофазными.

Галогенсеребряные и некоторые другие электроды на основе серебра -

для определения концентрации галоген-ионов используют электроды на основе

солей серебра (гомогенные электроды с твердыми мембранами или

монокристаллами, принципиально не отличаются от так называемых

гетерогенных, мембраны которых содержат такие же труднорастворимые соли,

внедренные в пластическую матрицу). В данных электрода используют смеси

твердых электролитов AgХ (Х-Cl, Br, I) с Ag2S. При изготовлении AgХ- Ag2S-

электродов AgХ в виде тонкого порошка диспергирует в Ag2S. Последний из-за

значительно меньшей растворимости (чем у галогенидов серебра) выполняет

роль химически инертной матрицы. Ag2S относится к полупроводникам

нестехиометрического состава, у которых электрические характеристики

зависят от условий получения образца и его чистоты. Эти особенности Ag2S

сказываются на электропроводности мембран. Проводимость в AgХ-мембранах

осуществляется ионами Ag+ по дырочному механизму Френкеля. Мембранная фаза

имеет постоянный состав, и диффузионный потенциал внутри мембраны равен

нулю. Потенциал галоген серебряных электродов подчиняется уравнению

Нернста. Существует 3 типа AgХ- электродов: первый - основу составляет

смесь AgХ и Ag2S, такой состав устраняет недостатки AgBr- и AgCl-

электродов и позволяет получить AgI-электрод, т.к. мембраны из чистого

иодида серебра не устойчивы и легко растрескиваются (это вызвано тем, что

твердый иодид серебра в зависимости от температуры и давления может

находится в различных модификациях); второй - основу мембраны составляет

смесь монокристаллов Cl и AgBr. Для AgI-электродов применяют смесь

поликристаллических AgI и Ag2S; третий - основу мембраны составляют осадки

галогенидов серебра, внедренные в силиконовый каучук. Качество мембран

зависит от природы и количества осадка, введенного в мембрану, и от

способа образования мембранной поверхности. С AgCl-электродом можно

определять ионы Cl- в интервале концентраций 10-5- 6 М. Для AgI-электродов

нернстовская зависимость потенциала наблюдается до 10-6 М I-.

Потенциометрическое определение с галогенсеребряным электродом осложняется

присутствием в исследуемом растворе сульфида, тиосульфата и цианата или

восстановителей. Кроме галогенсеребряных электродов используют и

ионселективные CN- и SCN- - электроды. AgCl-электрод используют для

определения Cl- ионов в молоке, минеральных фосфатах, фармацевтическом

производстве, при анализе гидроокиси калия, равновесных смесей.

Электроды на основе сульфидов (халькогенидов) некоторых двузарядных

ионов металлов - мембраны для этого вида электродов получают из смесей

сульфида серебра и сульфида (халькогенида) соответствующего металла.

Наибольшее значение для практики имеют: медный, свинцовый и кадмиевый

электроды.

Медь - селективный электрод - электрод с твердой мембраной обратимый

к ионам Cu2+, впервые полученный Россом. Электрод создан на основе

сульфидов меди и серебра. Ионы Cl- (и Br-) влияют на потенциал электрода

из-за реакции, которая может протекать на поверхности мембраны:

Ag2S + Cu2+ + 2Cl- = 2AgCl + CuS

Обратимый к ионам Cu2+ электрод может быть изготовлен также из низшего

окисла меди Cu2S. Твердые Cu2+-электроды применимы для изучения систем,

содержащих окислители и восстановители. Кроме кристаллического на основе

Ag2S-CuS получены два других электрода: один с мембраной из CuS,

внедренного в медный порошок, а другой с мембраной Cu2S - внедренного в

силиконовый каучук. Медь - селективный электрод работает в интервале

концентраций - от насыщенных до 10-8 М. Интервал рН в котором

могут функционировать электроды лежит в области 2-8 и зависит от

концентрации Cu2+ ионов.

Свинец - селективный электрод - поликристаллическая мембрана

свинцового электрода получена из смеси PbS и Ag2S путем прессования.

Концентрационный интервал характерный для данного электрода - 100-10-7 М.

Высокое содержание ионов Cd2+ и Fe3+ приводит к нарушению Pb2+-функции

электрода. Халькогенидные электроды мало пригодны в прямых измерениях, но

их используют при потенциометрическом титровании свинца. Ионами, влияющими

на потенциал свинцового сульфидного (халькогенидного) электрода

гомогенного и гетерогенно типа, являются Ag+, Hg2+, Cu2+, Fe3+, S2-, I-.

Pb2+-электрод используют для определения SO42- ионов. [2] Кроме

потенциометрического титрования сульфатов Pb2+-электрод можно применять

для определения ионов C2O42-, CrO42-, Fe(CN)64-, WO42-. Pb2+-электрод

используют при определения свинца в морской воде, а так же в газах, крови.

Кадмий - селективный электрод - электрод с твердой мембраной,

селективный по отношению к ионам Cd2+, получают прессованием смеси CdS и

Ag2S. Диапазон определения ионов Cd2+ - 100-105 М Cd2+. Кадмиевый

электрод имеет ограниченную область рН, в которой он работает как строго

обратимый к ионам Cd2+. В щелочных растворах ограничение функции электрода

связано с образованием гидроокиси кадмия. Cd2+-электроды используют при

потенциометрическом титровании и для определения сульфидов в жидкостях

бумажного производства.

Стеклянные электроды - наиболее распространенные электроды. С помощью

данного вида электродов определяют рН растворов. Существуют стеклянные

электроды которые позволяют определить концентрацию ионов Na+, K+. В

основе теории стеклянного электрода лежит представление о том, что стекло

- это ионообменник, который может вступать в ионообменное взаимодействие с

раствором. Стекло при этом рассматривается как твердый электролит. Стекло,

состоящее из окислов натрия, кальция, кремния, обладает резко выраженным

специфическим сродством к ионам Н+. Вследствие этого при соприкосновении с

водными растворами в поверхностном слое стекол образуется слой, в котором

ионы Na+ оказываются почти полностью замещенными на ионы Н+. Поэтому

Страницы: 1, 2