бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Захист від перенапруг бесплатно рефераты

- забезпечення безперебійності електропостачання електроприймачів за рахунок рівнобіжної роботи перетворювачів автоматизованих систем гарантованого електропостачання.

Автоматизація систем електропостачання усе в більшому ступені починає будуватися на кібернетичних принципах з виробленням законів оптимального керування і використанням керуючих обчислювальних машин.

Основу систем електропостачання об'єктів вузлових станцій різного призначення складають широко розгалужені повітряні чи кабельні електричні мережі напругою 35, 10 чи 6 кВ.

Через велику довжину цих мереж напруга в споживача, якщо не застосовувати додаткових заходів, буде відрізнятися від номінального плавно регулювати напругу в електричній мережі, а не східчасте, як у випадку застосування конденсаторів і реакторів.

Як компенсуючі пристрої можуть застосовуватися також випрямлячі з випереджальним кутом зрушення фаз струму щодо напруги і статичні керовані пристрої, що компенсують, на базі вентильних і феромагнітних елементів.

Регулювання напруги в електричній мережі даним способом можливо лише при наявності резерву реактивної потужності в системі. Тому застосування пристроїв, що компенсують, ефективно навіть при наявності інших регулюючих засобів.

Як випливає з рис. 1.4,б,в,г, установка пристроїв, що компенсують, як засобів регулювання поблизу електроприймачів одночасно зменшує передану по електромережах реактивну потужність, що приводить до розвантаження електричної станції і мережі, підвищенню коефіцієнта потужності (cos ц2 > cos ц1). При цьому поліпшується економічний режим роботи системи електропостачання, що є великою перевагою розглянутого способу.

Автоматизація регулювання напруги в електричних мережах дозволить забезпечити необхідну якість напруги на шинах споживачів і створити необхідні умови для економічної передачі електричної енергії з найменшими витратами реактивної і втратами активної потужності. Це забезпечить, у свою чергу, економію паливно-енергетичних ресурсів.

2.2Системи гарантованого електро постачання

Сьогодні можна з упевненістю сказати, що відношення українських споживачів до структури системи гарантованого електроживлення кардинально міняється. Відбувається перехід від рішень з локальними ІБП, в кожній крапці що вимагає резервування до великих систем, що забезпечують комплексний захист всього устаткування. Це, у свою чергу, викликало значне збільшення потужності задіяного в проектах устаткування. Крім того, поступово здійснюється перехід на технологічно досконаліші online-системы.

Чинником збільшення попиту на високотехнологічні системи гарантованого енергопостачання стала зміна потреб компаній: ростуть обчислювальні потужності, яким потрібно більше якісного електроживлення, міняється і культура і відношення замовників до даного устаткування в цілому. Якщо раніше акцент робився на захист на рівні «робочих місць» і забезпечення серверної кімнати без особливої уваги до систематизації, то зараз все більше уваги приділяється комплексним системам, що дозволяють вирішувати складні завдання на рівні підприємств.

На сьогоднішній день комплексні відмовостійкі системи безперебійного енергоживлення найбільш затребувані в таких областях діяльності:

Банки і фінансові інститути: системи гарантованого електропостачання необхідні в банковій сфері для безперебійної роботи платіжних систем і забезпечення безперервного контролю над фінансовими операціями, СГЕ у фінансовій сфері є одним з елементів збереження засобів тисяч клієнтів.

Державний сектор: структури, від роботи яких залежить безпека громадян, повинні бути забезпечені захистом від збоїв електроживлення. Серед них - Міністерство Надзвичайних ситуацій, пожежні і рятувальні служби, Міністерство транспорту і зв'язку, Національний банк, служба соціального страхування, пенсійний фонд.

Телекомунікаційні компанії: енергетична незалежність телекомунікаційних компаній є заставою їх безперебійної цілодобової роботи, на якій у свою чергу побудована функціональність клієнтських систем, - необхідність в СГЕ в цій галузі очевидна.

Дата-центри: цінність інформації визначається її доступністю - саме тоді, коли вона необхідна. Так, щоб не бути залежним від зовнішніх обставин, дата-центри встановлюють собі могутні агрегати безперебійного живлення.

Промислові підприємства: безперервну роботу виробничих циклів в різних галузях промисловості використовуючих АСУТП для управління технологічними процесами, може гарантувати тільки автономне енергозабезпечення відповідального об'єкту.

Транспорт: транспортні компанії відносяться до ряду відповідальних споживачів електроенергії, оскільки є гарантією стабільної роботи багатьох служб і різних підприємств, саме тому вони не повинні залежати від зовнішніх електросистем.

Медичні установи: державні і приватні лікарні, станції переливання крові, пункти невідкладної медичної допомоги - об'єкти, на яких в першу чергу повинні бути виключені проблеми з електроживленням і встановлені системи гарантованого електропостачання

В даний час реалізуються дві основні схеми СГЕ: розподілена і централізовано-змішанна. Для всіх об'єктів, що знов будуються або реконструюються, найбільш відповідним рішенням є схема централізовано-змішаного захисту локальних обчислювальних мереж/систем (ЛВС). У випадках, якщо реконструкція системи електропостачання не виконується, або при значних технічних складнощах реалізації схеми централізовано-змішаного захисту як тимчасове рішення допустиме виконання схеми розподіленого захисту.

3ограніченіє перенапружень. Відбувається за рахунок створення шляху стікання зарядів ємкостей здорових фаз на землю через активний опір, включений в нейтраль спеціального приєднувального трансформатора.

У роботі передбачається доповнити схему заміщення для точнішого моделювання процесів, що протікають при однофазних замиканнях на землю. Це у свою чергу спричинить збільшення кількості диференціальних рівнянь, але при цьому з'явиться можливість враховувати струми від двигунів власних потреб в місці замикання. Облік впливу двигунів дозволить більш вибрати уставки спрацьовування релейного захисту для її надійної і селективної дії при виникненні пошкодження.

Окрім цього наявність в схемі нелінійних елементів, наприклад, оксидно-цинкових активних опорів (ОПН) і вимірювального трансформатора напруги з нелінійною характеристикою, приводить до необхідності обліку їх параметрів, які є функціями від величин, залежних від режиму роботи системи. У програмі ці нелінійні характеристики задаються за допомогою умовних операторів, що реалізовують таким чином кусочно-лінійну апроксимацію. Це не може не привести до деякої погрішності при проведенні досліджень. Тому в роботі також ставиться завдання апроксимації нелінійних характеристик за допомогою методу найменших квадратів, що більшою мірою відповідає фізиці процесів, що протікають в схемі.

Проте на цьому перелік невирішених питань не вичерпується, оскільки при виборі режиму нейтралі для кожної конкретної мережі повинні враховуватися її специфічні особливості, зокрема: її параметри, стан ізоляції, категорія споживачів, наявність засобів захисту від замикань на землю, вимоги до електробезпеки і так далі Саме тому з'являються нові перспективи дослідження в роботі.

2.3 СПОСОБИ ПОКРАЩЕНЯ РОБОТИ РОЗПОДІЛЬЧИХ МЕРЕЖ

1. Основною причиною високої ушкоджености електроустаткування в мережах середнього класу напруги є дугові перенапруження, що виникають при переміжному характері горіння дуги в місці пробою фазної ізоляції на землю.

2. Проблема підвищення надійності роботи розподільних мереж напругою 6-10 кв складається з цілого комплексу завдань, ефективне вирішення яких може бути знайдене для кожної конкретної мережі індивідуально з урахуванням характерних її особливостей на основі комбінованого використання засобів релейного захисту, вдосконалення режиму заземлення нейтралі, застосування обмежувачів серії ОПН з різними порогами обмеження і системи швидкого і автоматичного шунтування пошкодженої фази.

3. Ефективне вирішення проблеми підвищення надійності роботи розподільних мереж напругою 6-10 кв може бути знайдено на основі проведення великого об'єму наукових і експериментальних досліджень.Обмеження перенапружень в системі власних потреб здійснюється за рахунок підключення до збірних шин нелінійних оксидно-цинкових активних опорів типу ОПН-КС-6/47. Останні забезпечують глибоке обмеження перенапружень до рівня 2uф. Проте їх недоліком є низька термічна стійкість, оскільки допустимий час роботи складає порядка 2 з в режимі однофазного замикання на землю в мережі 6 кв. У зв'язку з цим запропоновано в ланцюзі нейтралі фазних ОПН, сполучених в зірку (ріс.1), підключити однополюсний вимикач, через який відбувається з'єднання нейтралі ОПН із землею. При цьому між шунтуючими вимикачами Км1-км3 і вимикачем нейтралі ОПН Км0 виконується блокування, яке при включенні будь-якого з шунтуючих вимикачів автоматично відключає вимикач нейтралі Км0 і переводить два послідовно сполучених ОПН на підключення до лінійної напруги, чим обмежується їх час роботи при однофазному замиканні на землю.

Придушення перенапружень в мережі з моменту початку горіння дуги до моменту шунтування пошкодженої фази однополюсним контактором (Км1-км3) успішно можна здійснювати обмежувачами перенапружень типу ОПН, включеними по пропонованій схемі (ріс.1) для здійснення термостабільності. Це дозволяє відмовитися від установки в мережі додаткового устаткування (приєднувального трансформатора і бетелових резисторів) і, крім того, реалізація такого технічного рішення обмежує тривалість існування дугових замикань і супутніх ним перенапружень часом порядка 0,5 з до моменту включення шунтуючого контактора.

В умовах відсутності в даний час надійних засобів захисту мереж 6кв власних потреб електростанцій від наслідків однофазних замикань на землю, ведеться пошук ефективного вирішення проблеми підвищення надійності роботи електроустаткування, що полягає в оптимізації і управлінні режимом нейтралі мережі для забезпечення максимального обмеження амплітуди і тривалості всіх можливих в експлуатації підвищень напруги і зниження теплових втрат в місці пробою ізоляції. Для вирішення поставленого завдання найбільш раціональним є використання математичної моделі, яка дозволяє оцінити можливий рівень перенапружень в мережі з урахуванням її реальних параметрів, а також ефективність застосування того або іншого технічного рішення.

Особливістю моделі є можливість аналізу однофазних глухих і дугових замикань на землю не тільки поблизу збірних шин, але і в індуктивних обмотках двигунів, трансформаторів, а також замикань за наявності зсуву нейтралі, викликаного не симетрією навантаження. На ріс.3 приведена схема заміщення мережі власних потреб електростанції і стрілками показані шляхи протікання струмів в нормальному режимі. Дана мережа представлена зосередженими параметрами: фазними і міжфазними ємкостями і активними опорами, взаємоіндукцією між фазами. Джерело живлення і спеціальний приєднувальний трансформатор включені в схему відповідними фазними індуктівностями розсіяння і активними опорами. Високовольтні двигуни введені в схему заміщення фазними надперехідними індуктівностями розсіяння і активними опорами. У нейтраль приєднувального трансформатора включені струмообмежувальний резистор і реактор. Ланцюг замикання фази на землю в обмотці двигуна імітується ємкістю і активним опором дуги. Схема описується системою диференціальних рівнянь щодо невідомих контурних струмів і напруги у вузлах. У операторній формі ця система має вигляд: Аналіз отриманих результатів дозволяє зробити вивід про те, що наявність особливостей в характері перехідних процесів в мережі з резистивною заземленою нейтраллю, де частотні параметри струму і напруги можуть мінятися в широких межах, може бути причиною того, що широко поширені в даний час в мережах власних потреб електростанцій реле РТЗ-51 (РТЗ-50, РТ-40/0,2) в умовах частих пробоїв, що повторюються, так званих клювків, не встигають успішно спрацювати, і можуть знаходитися в такому стані тривалий час навіть при великих струмах замикання на землю. Хоча і невеликі по величині, але перенапруження, що тривало діють в цьому випадку, можуть викликати пошкодження електроустаткування мережі. Виходячи з викладеного, можна укласти, що резистивне заземлення нейтралі мережі власних потреб електростанцій не виключає можливості пошкодження електроустаткування в умовах нестійкого горіння дуги, що і підтверджується в експлуатації.

До недоліків заземлення резистора нейтралі мережі 6 кв слід також віднести низьку термічну стійкість бетелового резистора при його величині 100-400 Ом, оскільки допустима тривалість замикання при цьому не перевищує 1,2 хвилин. Після закінчення цього часу приєднувальний трансформатор, в нейтраль якого включений резистор, повинен бути відключений і мережа переводиться в режим з ізольованою нейтраллю зі всіма властивими нею недоліками.

Найпоширенішим в даний час методом запобігання аварійним наслідкам від однофазних замикань в даних мережах є заземлення нейтралі мереж через настроєних індуктивності (ДГК), які, зберігаючи переваги мереж з ізольованою нейтраллю, покликані поліпшити умови роботи електроустаткування при однофазних замиканнях на землю. Таке поліпшення передбачається за рахунок істотного зниження швидкості відновлення напруги на пошкодженій фазі після згасання дуги і зменшення струму в місці замикання на землю до рівня активної складової і вищих гармонік. Внаслідок цього, відбувається мимовільне згасання дуги, а, отже, скорочення об'ємів руйнувань, пов'язаних з термічною дією заземляючої дуги, а також зниженням кратності перенапружень до безпечної величини, оскільки з'являються шляхи для витікання на землю статичних зарядів з ємкості елементів мережі здорових фаз. Проте для досягнення таких результатів ступінь розладу котушки не повинен перевищувати меж .

При установці в мережах 6-35 кв котушки знижується швидкість відновлення напруги на хворій фазі після згасання дуги. При точній настройці котушки в резонанс час відновлення напруги до номінального складає декілька секунд. За цей час міцність ізоляції в місці пошкодження встигає відновитися. Але цей процес має і негативні сторони, тому що весь цей час на здорових фазах тримається напруга порядку (1,9-2,3) Uф. Відносна тривалість існування таких перенапружень може привести до пробою ізоляції в цих фазах, особливо в старих мережах з поганою ізоляцією.

У реальних мережах набудувати котушку точно в резонанс неможливо, оскільки індуктивність котушки регулюється дискретно. Допускається розлад котушки v<5% . При розладі в 5% напруга, що відновлюється, на пошкодженій фазі має характер биття. Що огинає напругу досягає максимуму, 1,78uф, що становить. Що надалі огинає напругу прагне до Uф. Міцність ізоляції до моменту максимуму биття може відновитися, але напруга 1,78uф на хворій фазі може викликати повторний пробій ізоляції з подальшою кратністю перенапружень 2,89uф. При розладі більше 25% кратність перенапружень така ж, як в мережах без установки дугогасильної котушки. При цьому кратність перенапружень при перекомпенсації трохи менше, ніж при недокомпенсації.

За наявності не симетрії настройка встановленою в мережі ДГК в резонанс веде до різкого збільшення напруги зсуву нейтралі в нормальному режимі роботи мережі. Причому не симетрія ємкостей фаз щодо землі сильніше впливає на величину зсуву нейтралі, чим не симетрія активних опорів ізоляції.

На основі проведених досліджень кафедрою "Електричні станції" Донецького національного технічного університету було запропоновано для усунення виявлених недоліків, викликаних зсувом нейтралі мережі і тривалим існуванням підвищеної напруги в режимах замикання фази на землю, паралельно ДГК підключити через контактор резистор. Опір резистора вибирається таким, щоб напруга не симетрії не перевищувала допустимого, а величина і тривалість перенапружень були мінімальними. Для того, щоб резистор не перегрівався великими струмами при стійкому однофазному замиканні він відключається за допомогою контактора з витримкою часу 0,5 з при перевищенні напруги нульової послідовності 20% від номінального.

Зі всієї різноманітності напрямів роботи по вдосконаленню системи компенсації ємкісних струмів на землю до практичної реалізації виявилися прийнятними і набули широкого поширення ДГК типу ЗРОМ із ступінчастим регулюванням індуктивності котушки і плунжерні ДГК з плавним регулюванням індуктивності. У першому випадку регулювання здійснюється шляхом перемикання відгалужень на робочій обмотці ДГР. Крок регулювання по струму для таких апаратів складає не менше 10% від повного струму котушки. Перемикання відпаювань проводиться тільки уручну при повністю знятій напрузі. Отже, в сучасних умовах дефіциту потужності і наявності графіка аварійного відключення електроприймачів при використанні таких ступінчасто регульованих дугогасильних апаратів виникнення значних розладів компенсації є неминучим.

У другому випадку регулювання ДГК здійснюється за рахунок плавної зміни величини повітряного зазору між рухомими частинами магнітопровода (плунжерами). Такі котушки володіють лінійною характеристикою, що намагнічує, у всіх режимах роботи мережі. Експлуатуються, як правило, в блоці з пристроями автоматичного регулювання компенсації і забезпечують швидкість регулювання по струму в межах 0,25-2 А/с.

Страницы: 1, 2, 3, 4