бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Замкнутые системы управления бесплатно рефераты

3. В системах высоких порядков, при большой Тос могут возникнуть колебания. Это можно исследовать по диаграмме Вышнеградского.

Из характеристического уравнения 3-го порядка определим координаты M,N.

p3+b1p2+b2p+b3=0

;

1-монотонный процесс

2-сходящийся колебательный

3-монотонный колебательный

4-неустойчивая область

Частотные методы.

1.Найквиста - позволяет судить об устойчивости замкнутой системы по АФХ разомкнутой. Соответственно передаточная функция разомкнутой системы заменяется p jw?и строится АФХ на комплексной плоскости. Если АФХ не охватывает точку (-1; j0) то замкнутая система устойчива.

2.Михайлова - определяет устойчивость замкнутой системы. Система устойчива, если при увеличении w от до конец вектора на комплексной плоскости опишет кривую, которая начинается на (+)-й части вещественной оси и последовательно обойдет против часовой стрелки n-квадратов, где n - порядок характеристического уравнения.

3.Метод вещественно-частотной характеристики и ЛАЧХ.

Методы графические и графо-аналитические (методы Башарина и Суворова), методы цифрового и аналового моделирования.

СИСТЕМЫ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ С

СУММИРУЮЩИМ УСИЛИТЕЛЕМ

Упрощенная принципиальная схема регулятора ЭП постоянного тока с отрицательной обратной связью по напряжению, току и скорости на рисунке 20.

Рис. 20

На рисунке приняты следующие обозначения:

М- ДПТ с независимым возбуждением;

ТП- тиристорный управляемый преобразователь;

УС- сумматор-инвертор на базе УПТ с коэффициентом усиления 1;

УК- корректирующее устройство на базе УПТ;

Rш- шунт датчика тока;

Rп- делитель напряжения (датчика напряжения);

ТГ- тахогенератор;

ДТ, ДН, ДС- датчики тока, напряжения, скорости (усилитель, преобразователь, фильтр).

СУЭП строятся на типовых элементах УБСР: УБСР-А (аналоговые), УБСР-Д (дискретные), УБСР-АИ, УБСР-ДИ (с интегральными составляющими в регуляторах).

В состав УБСР входят источники питания, задатчики входных сигналов, датчики измерения регулируемых параметров, усилители, корректирующие устройства КУ, гальванические развязывающие устройства; устройства защиты УЗ, устройства коммутации, устройства логики УЛ и т.д. Основной элемент аналоговой серии УБСР-АИ является УПТ (операционный усилитель) на микросхемах К553УД2 и К140УД7.

К140УД7 - операционный усилитель с внутренней коррекцией АЧХ,

коэффициент усиления - Ку=(23)104;

напряжение питания - Uпит 15В;

входное напряжение - Uвых = 10В.

УС - операционный усилитель для суммирования задающего сигнала U3 и сигналов обратной связи: Uот, Uон, Uос.

Если R3 = Rc = Rн = Rт + Rос, коэффициент усиления равен 1.

U =U3 - Uон - Uот - Uос.

УК- операционный усилитель, может выполнять функцию:

инвертора напряжения, если Zвх = Zос = R;

усилителя напряжения с К = Rос/Rвх, если Zос = Roc, Zвх = Rвх; Roc Rвх;

корректирующего устройства, структура и параметры которого определяются характером комплексных сопротивлений Zвх и Zoc.

В этом случае КУ может быть интегральным, дифференциальным, пропорционально- интегральным регулятором и т.п.

Датчики: для получения сигналов обратных связей.

Основные четыре вида датчиков: скорости, напряжения, тока и положения. Датчики момента, усилия, мощности получают путем соответствующей обработки сигналов датчиков тока и напряжения.

Датчики скорости: аналоговые и дискретные.

Аналоговые - тахогенераторы постоянного тока (серии ПТ) и переменного тока (серии ТТ).

Дискретные - модуляция источника света на фотоприемник.

Датчики тока и напряжения должны обеспечить гальваническую развязку сигнала обратной связи от силовой цепи. Датчики системы УБСР обеспечивают гальваническую развязку до 1000В, а датчики тока и магнитного потока, использующие эффект Холла - несколько тысяч вольт. Сигнал на ДТ снимается с шунта или трансформатора тока, на ДН- с делителя напряжения. Сигнал усиливается, выпрямляется (после демодуляции в устройстве гальванической развязки) и фильтруется (RС- фильтр).

Пример датчиков тока и напряжения производства ХЭМЗ:

ДТ- ЗАИ и ДН- 2АИ.

ДТ подключается к шунту, сигнал гальванически развязан, Uвых=10В; Кус=35- 135 погрешность менее 1%; на выходе RС фильтр с постоянной времени ф = 2мс.

Командные устройства:

Бесконтактные сельсинные командоаппараты с ручным приводом - для ввода задания.

Тип СКАЗ- 41, Uпит = 110В, f=50Гц, Uвых снимается с роторной обмотки; угол =60о.

Задатчик скорости - для систем автоматического регулирования скорости.

Блоки задания скорости: БЗС - на базе б/к сельсина БД- 404, связано с исполнительным двигателем РД- 09. Угол поворота задается микровыключателями.

БЕШД - б/к сельсин с приводом от шагового двигателя через редуктор.

БСР - задатчик скорости реостатного типа с приводом от РД-09 через редуктор. Интенсивность роста задающего напряжения задается заменяемым редуктором с различными коэффициентами передачи. На выходе сельсинов устанавливается фазочувствительный усилитель ФВ-1АИ с Uвых=10В.

Реализация регуляторов.

Регуляторы в системе неподчиненного регулирования строятся на базе ОУ, которые имеют специальные свойства:

-выход усилителя инверсный по отношению ко входу.

-ОУ может и должен работать в условиях действия глубоких ОС, вплоть до закорачивания вход/выход.

П - регулятор.

.

Рис. 21

И - регулятор.

Д - регулятор.

Рис. 22

выходной сигнал - импульс амплитуды и длительности.

Является источником высокочастотной помехи.

Рис. 23

ПИ - регулятор.

где Кп- коэффициент усиления пропорциональной части ПИ-регулятора;

Ти- постоянная времени интегральной части;

.

Рис. 24

ПИД - регулятор.

Передаточная функция звена будет иметь вид:

.

Апериодический регулятор.

Тогда

- апериодическое звено;

То=СосRoc;

или

.

Реализация сложных регуляторов по их передаточным функциям.

Сложный регулятор - регулятор, который не может быть реализован на одном ОУ.

Рис. 25

Регулятор скорости с отрицательной обратной связью по скорости

Рассмотрим статические и динамические характеристики регуляторов скорости с различными видами обратных связей. При этом понимаем, что все элементы , образующие систему , являются линейными стационарными .

Структурная схема системы регулирования скорости с обратной связью по скорости представлена на рис.10-3

На структурной схеме (Рис.10-3.) приняты следующие обозначения:

R(Р)- передаточная функция регулятора;

- датчик скорости;

Тс - постоянная времени фильтра;

Kc- коэффициент передачи обратной связи по скорости;

Kп, Тп- коэффициент усиления и постоянная времени тиристорного преобразователя;

Тэ, Тм - электромагнитная и электромеханическая постоянная времени двигателя;

;

Rэ и Lэ- эквивалентные сопротивления и индуктивность якорной цепи;

1/Кд=C- внутренняя отрицательная обратная связь по ЭДС двигателя,

C- постоянная двигателя при Ф=const. C=кф;

Тэ=Lэ/Rэ;

J-момент инерции двигателя с рабочей машиной.

Статический регулятор скорости

Регулятор пропорционального типа с коэффициентом передачи Кр.

Определение статических характеристик:

=f(U3); =f(cт), т.е. зависимости скорости от задающего и возмущающего воздействия.

Преобразуем структурную схему: вынесем возмущение ст из замкнутого контура, затем преобразуем замкнутый контур двигателя в динамическое звено без обратной связи (Рис. 10-4.).

Положив в полученной схеме р=0,что соответствует установившемуся режиму получим :

где К=КрКпКсКд- коэффициент усиления разомкнутой системы;

В разомкнутой системе :

ор = КрКпКд U3 -скорость идеального холостого хода;

р = КдRэс-падение скорости;

следовательно: 03 = ор/(1+К); 3с = р/(1+К).

На рис. представлены статические характеристики

а) при IС=0;

в) при.

Т.к. в прямой цепи замкнутого контура системы нет идеального интегрирующего звена, рассматриваемая система является статической как по возмущающему (с), так и по управляющему (U3) воздействиям и имеет статические ошибки по этим воздействиям.

Определим статическую ошибку по возмущающему воздействию с. т.е. выражение для совпадает с величиной падения скорости в замкнутой системе.

Рисунок 10-6- статическая характеристика = f(c).

Характеристика построена для 03=const для различных коэффициентов усиления К2>К1>0.

Статическая ошибка по возмущающему воздействию прямо пропорциональна величине нагрузки, характеризуемой с, и обратно пропорциональна коэффициенту усиления К.

Статическая ошибка по управляющему воздействию U3

Uо- статическая ошибка по управляющему воздействию замкнутой системы при с = 0,

U- приращение статической ошибки, обусловленное с.

U увеличивается с возрастанием нагрузки с Рис. 10-7.

При К= U=0.

Динамические характеристики:

для оценки влияния отрицательной обратной связи по скорости, типа и параметров регулятора на свойства регулятора скорости сравним передаточные функции (п.ф.) разомкнутых и замкнутых систем регулирования W.

Примем Тс и Тп равными 0 ввиду их малости по сравнению с Тэ и Тм. Передаточная функция системы по управляющему воздействию:

.

Линейная стационарная система второго порядка всегда устойчива. Предельный коэффициент усиления Кпр = . Качество переходного процесса полностью определяется относительным коэффициентом демпфирования и собственной частотой колебания о (при = 0).

Собственная частота о характеризует быстродействие системы; чем больше о, тем быстрее затухает переходной процесс.

Для разомкнутой системы :

При <1- переходной процесс колебательный затухающий.

При >1- переходной процесс апериодический.

При =0- незатухающие гармонические колебания.

-коэффициент демпфирования.

Передаточная функция замкнутой системы по управляющему воздействию

Для замкнутой системы:

То есть, жесткая отрицательная обратная связь по скорости увеличивает о и уменьшает 3 в раз. Значит с ростом К возрастает скорость затухания и уменьшается колебательность (перерегулирование) переходного процесса. Жесткая отрицательная обратная связь по улучшает устойчивость, т.к. уменьшается Тм и ТэТм в (1+К) раз. Аналогично исследуются переходные процессы, обусловленные действием нагрузки в виде ударного приложения Мс (или с = КдМс) к валу двигателя.

Переходная функция замкнутой системы по возмущающему воздействию:

где Iд, Mд- динамические ток и момент.

Если Р=0 (установившийся режим) д = с ;

Мд =Мс.

На кривых переходного процесса = f(t) и

Мд = f(t) (Рис. 10-8.) наибольшее отклонение скорости дин от ее начального значения называют динамическим падением скорости, а статическую ошибку - статическим падением скорости.

Отклонение характеризует перерегулирование по скорости, а отношение Мд/М дуст - по моменту.

АСТАТИЧЕСКИЙ РЕГУЛЯТОР СКОРОСТИ

Рассмотрим характеристики САР скорости с ПИ- регулятором. Структурная схема аналогична рассмотренной ранее для статического регулятора скорости, передаточная функция регулятора:

Передаточные функции разомкнутых и замкнутых систем по управляющему воздействию.

где Кv=КпКдКс/о - коэффициент усиления разомкнутой системы по .

Из структурной схемы и передаточной функции следует, что регулятор скорости является астатической системой с астатизмом первого порядка, как по управляющему, так и по возмущающему с воздействиям. Следовательно: статические ошибки и U равны нулю, однако устойчивость системы ухудшается, т.к. интегратор вносит фазовый сдвиг в замкнутый контур- 90о на всех частотах. Это так же следует из выражения для предельного коэффициента системы.

Кvпр = 1/(Тэ- R);

т.е. Кvпр имеет предельное значение. Оптимальное значение постоянной времени регулятора с точки зрения устойчивости Rотп = Тэ. В этом случае Кvпр = .

Регулятор скорости с отрицательной обратной связь по току.

На рис представлена структурная схема САР с обратной связь по току.

Кт/(Тт+1)- датчики тока$;

Кт- коэффициент передачи ОС по току;

Тт- постоянная времени фильтра/

Преобразуем структурную схему на рис к виду рис

Учитывая, что в статическом режиме р=0, д = с

,

(+)- при положительной обратной связи по току.

(-)- при отрицательной обратной связи по току.

Скорость идеального холостого хода в замкнутой и разомкнутой системах одинакова.

,

где р = сRэКд- падение скорости в разомкнутой системе.

При Кт=0, зт=pт

На рис приведены статические характеристики =f(I) для положительной а) ,

и для отрицательной б) ОС при Uз= const

Кт=0соответствует характеристике разомкнутой системы

При положительной обратной связи по току возможны три режима работы ЭП :

- режим недокомпенсации,

когда

В этом случае с ростом нагрузки скорость уменьшается.

режим полной компенсации:

и 3 = 0,

т.е. с изменением нагрузки = const,

режим перекомпенсации:

с ростом нагрузки скорость возрастает. Указанные режимы могут иметь место при Кт = const и при изменении Кр

При отрицательной обратной связи по току всегда, падение скорости под нагрузкой больше, чем в разомкнутой системе. Поэтому отрицательная обратная связь по току в регуляторах скорости применяется только в сочетании с отрицательной обратной связью по скорости.

Передаточные функции по задающему воздействию разомкнутой W(p) и замкнутой Ф(p) систем:

-для разомкнутой системы;

- для замкнутой системы;

т.е. 03=ОР

Здесь «-» cоответствует положительной обратной связи по току;

«+» cоответствует отрицательной обратной связи по току;

При положительной обратной связи по току в режиме недокомпенсации система устойчива;

в режиме перекомпенсации система не устойчива;

в режиме компенсации система находится на границе устойчивости.

При отрицательной обратной связи система всегда устойчива.

Характер переходного процесса в системе зависит от коэффициента 3 и 03. Так как ор = 03, скорость затухания переходного процесса в замкнутой и разомкнутой системах одинакова. Если принять р = 1, тогда в режиме:

недокомпенсации 3<1; переходной процесс затухающий;

компенсации 3=0;- гармонические незатухающие колебания;

перекомпенсации 3<0; переходной процесс расходящийся.

В системе с отрицательной обратной связью по току 3>1; переходной процесс апериодический.

Хотя в режиме недокомпенсации система устойчивости, регулятор скорости в таком режиме самостоятельно практического применения не получил; он широко используется совместно с отрицательной обратной связи по скорости в системах с повышенными требованиями к жесткости статической характеристики.

Регулятор скорости с отрицательной обратной свзью по напряжению

Для установившегося режима составим структурную схему (Рис. 10-14.).

В данном случае имеем систему стабилизации напряжения, подводимого к якорю ДПТ. Полагая выходным сигналом напряжение Uд, находим:

,

где Uдо - напряжение на входе ДПТ при с = 0

- падение напряжения в ТП в замкнутой системе при с > 0.

Uдр- падение напряжения в ТП в разомкнутой системе;

Rп- внутреннее сопротивление ТП;

Кн- коэффициент обратной связи по напряжению.

Uз выражения для Uдз и Uдр видно, что падение напряжения в замкнутой системе при одинаковых с в (1+КрКпКн) раз меньше, чем в разомкнутой; замкнутая система обеспечивает стабилизацию напряжения Uд, компенсируя падение напряжения в силовой цепи преобразователя. Величина Uдз является статической ошибкой по возмущению. При К = имеем идеальный источник питания неограниченной мощности и статическая характеристика регулятора будет представлять естественную характеристику ДПТ НВ (К = КрКпКн).

В общем случае статическая характеристика регулятора скорости:

Следовательно: обратная связь по напряжению не может быть использована для стабилизации ЭП. Обычно она используется в регуляторах в сочетании с другими видами обратных связей.

Динамические характеристики замкнутой системы авт. регулирования с отрицательной обратной связью по напряжению такие же как и в разомкнутой системе, т.е.

Страницы: 1, 2