бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Водяной насос бесплатно рефераты

Результаты заносим в таблицу 1.6.

Таблица 1.6

1

2

3

4

5

6

7

8

9

10

11

12

Mпр,

-0,0955

-23,308

-37,5718

-36,641

-29,09

-14,64

-28,89

-778,34

-1441,8

-1854,7

-1784,4

-1107,8

1.10 Определение работы сил сопротивления А и движущих сил Аg

Так как работы сил сопротивления равны , то график строим методом численного интегрирования графика по формуле трапеции:

- шаг интегрирования

Результаты заносим в таблицу 1.7

Таблица 1.7

1

2

3

4

5

6

7

8

9

10

11

12

А, Дж

0

-6,12

-22

-41,4

-58,6

-70

-81,38

-292,6

-873,4

-1735,9

-2688

-3444,7

-3734,5

Дж/мм

1.11 Построение графика изменения кинетической энергии и диаграммы «энергия-масса»

Для построения графика изменения кинетической энергии поступаем следующим образом: вычитаем ординаты графика из соответствующих ординат графика и строим график суммарной (избыточной) работы , который одновременно является графиком изменения кинетической энергии механизма и приведенного момента инерции.

Дж/мм

1.12 Определение параметров маховика

Для определения момента инерции маховика по закону коэффициента неравномерности движения ? следует провести касательные к графику «энергия-масса» под углами ?max и ?min к оси абсцисс (оси приведенного момента инерции) тангенсы которых определяются по формуле:

;

кг*м2

Т.к. маховик выполнен в форме стального диска, момент инерции маховика будет равен:

,

где m - масса маховика, - плотность (для стали =7800 кг/м3), b = b/D - относительная ширина маховика.

Подставив значения получим:

Масса маховика

(кг)

1.13 Определение истинной угловой скорости звена приведения

Истинная угловая скорость звена приведения находится следующим образом:

;

где

Дж

с-1

Результаты вычислений приведены в таблице 1.8

Таблица 1.8

1

2

3

4

5

6

7

8

9

10

11

12

, с-1

29,88

29,89

29,89

29,91

29,94

29,97

29,99

29,99

29,96

29,92

29,88

29,87

Проверка:

2. Динамический анализ рычажного механизма

Силовой расчет механизма

Задачей силового анализа является определение при заданном законе движения неизвестной внутренней силы, то есть усилия (реакции) в кинематических парах. Эта задача решается с применением принципа Даламбера. Силовой расчет плоских рычажных механизмов выполняется по группам Асура в порядке обратном их присоединения к входному звену.

2.1 Определение углового ускорения звена приведения

Угловое ускорение определяем из дифференциального уравнения машинного агрегата:

;

где

Расчет производим для 10-го положения механизма (Мпр10 - максимальный).

-угол наклона касательной к кривой графика к оси абсцисс в исследуемой точке.

Подставляем ранее определенные значения и получим:

Ведущее звено движется замедленно.

2.2 Определение линейных и угловых скоростей, ускорений точек и звеньев механизма

Для построения плана механизма в 10-ом положении примем масштабный коэффициент м/мм

Для построения плана скоростей определим скорость точки В.

м/с

Приняв отрезок pb=340 мм, определим масштабный коэффициент.

м/(с·мм)

Построение плана ведется в соответствии с векторными уравнениями рассмотренными в положении №10. Тогда действительные скорости:

м/c

м/c

с-1

м/c

Направление получим, поместив вектор в точку С звена 2 и рассмотрев поворот звена под его действием относительно точки В.

Так как кривошип вращается неравномерно, ускорение точки В кривошипа равно:

Выбираем масштабный коэффициент для ускорения .

Вычисляем отрезки изображающие и

мм,

мм

Из полюса откладываем ¦ АВ направленный к центру вращения, отрезок + АВ в направлении .

Ускорение точки С найдем, решив графически систему векторных уравнений.

где нормальная составляющая ¦ СВ и равна:

мм

тангенциальная составляющая + СВ.

Точка принадлежит стойке, поэтому ¦.

Положение точки найдем по теореме подобия:

мм

Тогда действительные ускорения точек и звеньев равны:

м/с2

м/с2

м/с2

Направление получим, помещая в точку С и рассматривая поворот звена 2 под его действием относительно точки В. Звено движется ускоренно.

2.3 Расчет сил, действующих на звенья механизма

Определим силы тяжести звеньев, главные векторы и главные моменты сил инерции звеньев.

Звено 1:

- т.к. кривошип уравновешен.

Звено 2:

Звено 3:

Ф2= ; Ф3=

2.4 Определение значений динамических реакций в кинематических парах групп Ассура

Fc[10] = 33221,2 H

Отсоединим группу Асура (2; 3). Приложим все известные внешние силы, главный вектор сил инерции Fи2 и главный момент сил инерции Ми2, а вместо отброшенных звеньев 1 и стойки 0 приложим реакции F21 и F30, причем неизвестного по величине F21 представим как сумму: , а реакцию F30 направим перпендикулярно направляющей ползуна.

Определим реакцию из условия для звена 2

Для определения составляющей и реакции F30 запишем на основании принципа Даламбера векторное уравнение статики для групп Ассура (2; 3)

Выбираем масштабный коэффициент Н/мм

Определим чертежные отрезки, изображающие силы на чертеже:

Строим план сил группы Асура (2; 3)

Из плана определяем:

Переходим к силовому расчету механизма 1 класса. В точку В приложим реакцию . К звену 1 прикладываем главный момент сил инерции и движущий момент. Рассмотрим равновесие звена 1 относительно точки А.

Из плана сил определяем: .

2.5 Оценка точности расчетов

Находим относительную погрешность:

594,6 + 1258,8 - 33600·58,05·0,00095 = 1853,4 - 1852,9 = 0,5 ? 0.

3. Синтез зубчатого механизма

Исходные данные:

Параметры планетарного редуктора:

U1H = 5,5; k = 4; m1 = 7 мм.

Параметры открытой зубчатой передачи:

Z4 = 15; Z5 = 28; m = 12 мм.

Параметры исходного контура по ГОСТ 16532-70:

= 20 град; ha* = 1; c* = 0,25.

3.1 Подбор чисел зубьев

Подбор чисел зубьев и числа сателлитов производим с учетом условия соосности: воспользуемся формулой Виллиса с учетом

;

;

Подбор зубьев производим путем подбора с учетом ряда ограничений:

Для колес с внешними зубьями: Z1 ? Zmin = 17

Для колес с внутренними зубьями: Z3 ? Zmin = 85 при ha* = 1

Принимаем Z1 = 24, Z3 = (U1H - 1)*Z1 = 4.5 * 24 = 108

Число зубьев Z2 определяем из условия соседства:

Z1 + Z2 = Z3 - Z2

- условие целостности выполняется.

Сборка нескольких сателлитов должна выполняться без натягов при равных окружных шагах между ними. Оно выражается следующим соотношением:

, где Ц = 1, 2, 3, … - целое число; p = 0

- условие целостности выполняется

;

- выполняется.

Окончательно принимаем Z1 = 24; Z2 = 42; Z3 = 108.

Определяем диаметры колес планетарного редуктора. Редуктор собирается из колес без смещения.

мм

мм

мм

Вычерчиваем схему редуктора в масштабе 1: 3

3.2 Проектирование цилиндрической эвольвенты зубчатой передачи внешнего зацепления

Исходные данные:

Z1 =13, Z2 =28 - числа зубьев колёс;

m = 8 мм - модуль зацепления;

h*a = 1 - коэффициент высоты головки зуба;

с* = 0,25 - коэффициент радиального зазора.

3.2.1 Выбор коэффициентов смещения x1 и x2 исходного контура

Коэффициенты смещения и должны соответствовать условию: (При отсутствии подрезания зубьев.)

x1 xmin1; x2 xmin2

xmin1 и xmin2 определяем по формуле:

;

Наименьший коэффициент смещения по критерию отсутствия подрезания зуба при заданных числах зубьев:

;

;

Выбираем коэффициенты смещения и из таблицы коэффициента смещения для силовых передач при свободном выборе межосевого расстояния (Z1 = 10…30, Z2 ? 30): x1=0.3; x2=0; x= x1+ x2=0,3.

3.2.2 Угол зацепления

;

w=22.06160=2204'

3.2.3 Делительные диаметры d1 и d2

d1 = m*z1 = 8*13 = 104 мм

d2 = m*z2 = 18*28 = 224 мм

3.2.8 Радиусы основных окружностей

;

.

3.2.4 Делительное межосевое расстояние передачи

3.2.5 Межосевое расстояние передачи

3.2.6 Коэффициент воспринимаемого смещения

3.2.7 Коэффициент уравнительного смещения

3.2.8 Радиусы начальных окружностей

Проверка вычислений:

aw = rw1 + rw2 = 52.72 + 113.56 = 166.28 (мм)

Радиусы вершин зубьев

3.2.9 Радиусы впадин

Высота зубьев колес

h = ra1 - rf1 = ra2 - rf2 = 56,68 - 44,4 = 114,28 - 102 = 12,28 (мм)

Основной делительный шаг зубьев

мм

Относительные толщины зубьев на вершинах в пределах нормы.

Вычерчиваем по полученным данным эвольвенту зубчатого зацепления в масштабе М 2,5: 1.

4. Синтез кулачкового механизма

4.1 Основные положения и определения

Кулачковым механизмом называется трехзвенный механизм, составленный из стойки и двух подвижных звеньев (кулачка и толкателя), связанных между собой посредством высшей кинематической пары. Механизм служит для воспроизведения заданного периодического закона движения ведомого звена. Ведущим звеном в кулачковом механизме является, как правило, кулачок, ведомым звеном толкатель.

Толкатель в кулачковом механизме заканчивается, как правило, вращающимся роликом, который касается кулачка непосредственно. Наличие ролика никак не отражается на законе движения толкателя. Назначение ролика - перевод трения скольжения толкателя по кулачку, в трение качения ролика по поверхности кулачка. В итоге получаем повышение долговечности кулачкового механизма по износу.

Кулачку в кулачковом механизме присущи два профиля - действительный (рабочий) и теоретический.

Действительным профилем является профиль кулачка, с которым непосредственно соприкасается ролик толкателя.

Теоретический профиль - это кривая, которую описывает центр ролика толкателя при движении относительно кулачка.

Действительный и теоретический профили кулачка являются эквидистантными (равноудаленными друг от друга) кривыми.

В движении кулачкового механизма различают в общем случае четыре этапа (фазы):

1 этап - удаление толкателя, фазовый угол , 2 этап - дальнее стояние толкателя, фазовый угол . Профиль кулачка на этапе дальнего стояния есть окружность радиуса с центром на оси О вращения кулачка.

3 этап - приближение толкателя, фазовый угол . 4 этап - ближнее стояние толкателя, фазовый угол .

Профиль кулачка на этапе ближнего стояния толкателя, является дугой окружности радиуса , с центром на оси О вращения кулачка. При этом .

Соответствие между фазовыми углами в движении кулачка и перемещением толкателя устанавливается, так называемой, циклограммой работы кулачкового механизма.

4.2 Исходные данные

ход толкателя, мм;

фазовые углы кулачка, соответствующие этапам удаления и приближения толкателя, градусы;

фазовые углы кулачка, соответствующие дальнему и ближнему стоянию толкателя, градусы;

Законы движения:

- при удалении: трапецеидальный

- при приближении: параболический симметричный

4.3 Расчет передаточных функций выходного звена

Рассчитаем перемещения Si и аналог ускорения Si по соответствующим заданному закону формулам.

Фаза удаления:

, при

, при

, при

, при

, при

, при

, при

, при

, при

, при

, при

, при

, при

, при

, при

h = 20 (мм); ?y = 120? = 2.093 рад; i=0, 0.348, 0.697, 1.046, 1.395, 1.744, 2.093 рад

Фаза возвращения:

, при

, при

, при

, при

, при

, при

?b = 50? = 0,872 рад, i=0, 0.145, 0.29, 0.436, 0.581, 0.726, 0.872 рад

Табл. 4.1

i

i

Si, м

S`, м

S``, м

yi, мм

y`, мм

y``, мм

Фаза удаления

0

0

0

0

0

0

0

0

0

1

20

20

0,00065

0,00563

0,03238

1,3

11,26

64,76

2

40

40

0,00395

0,01377

0,02435

7,9

27,54

48,7

3

60

60

0,01001

0,01908

0,00006

20,02

38,16

0,12

4

80

80

0,01601

0,01381

-0,0243

32,02

27,62

-48,6

5

100

100

0,01935

0,00531

-0,0243

38,7

10,62

-48,6

6

120

120

0,02

0

0

40

0

0

Фаза приближения

7

0

220

0

0

0,0526

0

0

105,2

8

8.33

228.33

0,0011

0,0133

0,0526

2,2

7,3

105,2

9

16.66

236.66

0,00424

0,0266

0,0526

8,48

14,6

105,2

10

24.99

244.99

0,01

0,04

0,0526

20

21,9

105,2

11

33.32

253.32

0,01554

0,01755

-0,0526

31,08

19

-105,2

12

41.65

261.65

0,01887

0,0088

-0,0526

37,74

9,5

-105,2

13

50

270

0,02

0

-0,0526

40

0

-105,2

?l = 0,0005 м/мм.

4.4 Определение основных размеров

Определим минимальный радиус кулачка из условия выпуклости профиля. Для этого на основании графиков S(?) и S» (?), строим график S(S''). Проведем касательную под углом 45 к оси S. За центр вращения кулачка выбираем точку Оi лежащая ниже точки О на 10 мм.

R o = 0,0752 м

Проводим окружность радиусом R o. Так как e = 0, линия движения толкателя yy проходит через центр вращения кулачка Оi. Вдоль этой линии от точки АО откладывается перемещение толкателя согласно графику.

Заключение

В результате выполнения курсовой работы закрепил и обобщил знания и навыки, полученные при изучении дисциплины, научился применять на практике теорию курса (кинематику, динамику, синтез эвольвентного зацепления и синтез кулачкового механизма).

Выполняя курсовой проект по теории машин и механизмов, овладел навыками использования общих методов проектирования и исследования механизмов. Также овладел методами определения кинематических параметров механизмов, оценки сил, что действуют на отдельные звенья механизма, научился оценивать сконструированный механизм с точки зрения его назначения - обеспечивать необходимые параметры движения.

Список использованных источников

Попов С.А. Курсовое проектирование по теории механизмов и механике машин. - М.: Высшая школа, 1986.

Попов С.А., Тимофеев Г.А. Курсовое проектирование по теории механизмов и механике машин. - М.: Высшая школа, 1999.

Курсовое проектирование по теории механизмов и машин. / Под ред. Девойно Г.Н. - Мин.: Высшая школа, 1986.

Теория механизмов и машин. / Под ред. Фролова К.В.

Страницы: 1, 2