бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Випробування механічних властивостей і випробування довговічності матеріалів бесплатно рефераты

Вибір діаметрів кульки і навантаження в залежності від твердості і товщини зразка

Мат-л

Інтервал твердості, МПа

Мінімальна товщина зразка, мм

Співвідношення між навантаженням і

діаметром кульки К=Р/D2

Діаметр кульки, мм

Навантаження Р.Н

Витримка під навантаженням, с

Чорні метали

4500......1400

6-3

4-2

2

300

10 5

2,5

30000

7500

1875

10

<1400

6

6-3

3

100

10 5

2.5

10000

2500

625

10

Кольорові метали

>1300

6-3

4-2

2

300

10

5

2,5

30000

7500

1875

30

350......1350

9-3

6-3

3

100

10

5

2,5

10000

2500

625

ЗО

80...350

6

6-3

3

25

10 5

2,5

2500

625

156

60

Для матеріалів твердість НВ = 4000...7800 Мпа використовують шкалу А з навантаженням 600Н. Відповідні позначення - HRC і HRA. Ряд навантажень 600; 1000 і 1500Н. При цьому навантаження Р вміщують у собі попереднє навантаження Р0=100Н. Твердість за Роквеллом визначають в умовних одиницях. За одиницю твердості взята величина, яка дорівнює осьовому переміщенню індентора на 0,002мм.

При вимірюванні алмазним конусом і кулькою діаметром 1,588 мм можна розрахувати твердість згідно з формулами для шкал А і С НRА і НRС=100-Е; для шкали В:НRВ=130-Е.

Рис 1.1 Схеми випробувань твердості за методами: 1 - Брінелля; 2 - Роквелла; 3 - Віккерса; 4 - Польді

Величину Е визначають як відношення:

де h - глибина занурення індентора під дією загального навантаження; h0- те саме, під дією попереднього навантаження 100Н.

Випробування за методом Роквелла проводять на зразках або деталях.

Таблиця 1.3

Таблиця для визначення типу індентора, навантаження і шкали при вимірюванні твердості за Роквеллом.

Шкала

Позначення твердості за Роквеллом

Тип індентора

Межі вимірювання в одиницях

твердості

за

Роквеллом

Навантаження, H

Відповідна твердість за Брінеллем

А

HRA

Алмазний конус

70... 89

600

3750...782(

В

HRB

Сталева кулька

20...100

1000

1050...240

С

HRC

Алмазний конус

22.69

1500

2410...683»

Шкалою А користуються при вимірюванні твердості матеріалів, якщо вона більша, ніж у загартованих сталей (тверді сплави, кераміка та ін.).

За шкалою В оцінюють твердість м'яких матеріалів, таких, як мідь, латунь, бронза, алюмінію, незагартовані сталі.

За шкалою С вимірюють твердість переважно загартованих сталей.

Метод Віккерса (ГОСТ 2999-83) засновано на тому, що твердість визначають вдавлюванням чотиригранної піраміди з кутом при вершині 136° у поверхню зразка. Твердість оцінюють відношенням навантаження до поверхні відбитка:

де а - кут при вершиш, а=1360; а - середньоарифметична довжина обох діагоналей відбитка.

Діапазон навантажень 50; 100; 200; 300; 500 і 1000Н. Можливість застосування малих навантажень 50 і 100Н дозволяє визначити твердість деталей малої товщини і тонких поверхневих шарів (цементованих, азотованих тоїцо). Метод застосовують для будь-яких матеріалів.

Вимірювання мікротвердості (ГОСТ9450-84) проводять на мікротвердомірах, обладнаних мікроскопами. Твердість за методом Віккерса оцінюють по відбитку піраміди з кутом 136°, але при малих навантаженнях від 0,05 до 5Н. Відбиток при цьому має малі розміри, що дозволяє оцінювати твердість окремих зерен для будь-яких матеріалів.

Метод Польді - спосіб орієнтовного визначення твердості за допомогою переносного приладу динамічним вдавлюванням шарового або конічного індентора.

Принцип дії приладу засновано на тому, що куля під дією удару, який наноситься вручну, одночасно вдавлюється у поверхню, що випробовується і в еталонний зразок, твердість якого відома.

Твердість за Польді, у відповідності з методом Брінелля, визначають за формулою:

Цей метод використовують для контролю великогабаритних виробів і деталей.

Сучасні прилади для вимірювання твердості динамічними методами розроблені на базі мікропроцесорної техніки. Вони забезпечують вихід на персональний комп'ютер і високу продуктивність контролю. Принцип дії цих приладів базується на вимірюванні швидкості пружного відскоку індентора від контролюємої поверхні. Швидкість відскоку являється функцією твердості.

Електронний блок приладів забезпечує підсилення і перетворення вхідних сигналів датчиків в цифровий код, математичну обробку, керування режимами вимірювання і індикацію результатів.

Механічний пристрій забезпечує рух індентора з твердосплавним кульковим вакінечником діаметром 3,5мм відносно поверхні контролюємого матеріалу і електричної катушки. В середині індентора розміщений постійний магніт. При перетинанні магнітним полем витків катушки в ній виникає ЕРС, пропорційна швидкості руху індентора.

Динамічні вимірювачі твердості застосовуються для деталей масою більше трьох кілограмів з товщиною стінки не менш 10 мм. Чистота поверхні для контролю - не менше Rz20. Але для оцінки можливості застосування таких приладів слід керуватися не тільки товщиною стінки, а і жорсткістю в цілому системи, яка контролюється.

Динамічні твердоміри мають різні функціональні можливості, кількість шкал і діапазони вимірювання.

Тріщиностійкість кількісно оцінюється критичним коефіцієнтом інтенсивності напруг (в'язкість руйнування) - К1с у вершині тріщини для умов розвитку деформації лише в одній площині. Для визначення К1с проводиться розтягування спеціальних зразків з попередньо утвореною тріщиною втомленності. При випробуваннях будують діаграму "навантаження - зміщення берегів тріщини". Аналіз цих діаграм дозволяє визначити опір розповсюдженню тріщин в залежності від розмірів зразку і тріщини. Величина в'язкості руйнування є структурно чутливою і, як правило, являється тим нижчою, чим вище межа текучості. (Рис.1.2).

40

Рис 1.2 Залежність К1е від для сталі - 1; сплавів титану - 2; сплавів алюмінію - З

Визначення тріщиностійкості відповідальних конструкцій проводять з точністю до ±10%. Для конструкцій з обмеженою відповідальністю вимоги до визначення К1с знижуються.

1.3 Механічні властивості, які визначають при динамічному навантаженні

Динамічні випробовування відрізняються від статичних більшою швидкістю навантаження. При цьому необхідно розділяти динамічні навантаження одноразові (імпульсивні) і циклічні - знакозмінні. При динамічних одноразових випробовуваннях визначається ударна в'язкість, холодноламкість і критична температура крихкості.

Рис. 1.3 Схема визначення ударної в'язкості від температури

При циклічних (знакозмінних) навантаженнях визначають межу витривалості, а також довговічність від моменту появи тріщини і до руйнування -живучість.

Ударна в'язкість(КС)

визначається відношенням роботи, яка витрачається при ударному зламі на руйнуваннях

К зразка з надрізом (концентратом) до площі перетину зразка S в місті руйнування (Рис.1.3):

КС=К/8, Дж/м*

По відомим величинам маси бойка маятника і висоти падіння розраховується величина роботи на руйнування. Найбільш поширеними є зразки з величиною R= 1мм (U - подібний надріз) і R=0,25мм (V подібний), а також з тріщиною від утомленості. Відповідно до цього величина ударної в'язкості позначається КСU; КСV або КСТ.

В реальних конструкціях робота на руйнування являється інтегральною величиною, яка складається з роботи на уворення тріщини - КСут і роботи на розповсюдження в'язкої тріщини -КСр:

КС=КСут + КСp;

При руйнуванні крихких матеріалів основна частина роботи витрачається на утворення тріщини, а її розповсюдження потребує незначної роботи. При руйнуванні пластичних матеріалів робота розповсюдження тріщини зіставима або більша по значенню, ніж робота по її утворенню.

Холодноламкістю називається властивість матеріалів мати абсолютно крихкий злам при низьких температурах. Різні матеріали і сплави в залежності від температури можуть руйнуватись крихко або в'язко. Це залежить в основному від типу кристалічної решітки і хімічного складу. Так, наприклад, метали з об'емноцентрованою кубічною решіткою (Fеа; Сr; Рb) мають схильність до різкого зниження ударної в'язкості при певній мінусовій температурі. Разом з тим, метали з решіткою гранецентрованого куба(Fеy; Ni; Cu) відносяться до нехолодноламких.

При виготовленні конструкцій необхідно оцінювати їх температурний запас в'язкості. Для цього необхідно знати поріг холодноламкості матеріалу, з якої виготовляється конструкція і температурні умови її експлуатації в майбутньому. Температурний інтервал між цими величинами і складає запас в'язкості. Поріг холодноламкості визначають при випробуванні ударним згином надрізаних зразків при різних температурах. По отриманим даним будують графіки залежності ударної в'язкості від температури(рис.1.4).

Поріг холодноламкості

Рис. 1.4 Залежність ударної в'язкості від температури

Зниження ударної в'язкості відбувається у певному інтервалі температур Т1-ТЗ, який називають порогом холодноламкості. В цьому інтервалі злами можуть бути як в'язкими, так і крихкими. Температура, яка відповідає заданій величині ударної в'язкості, називається критичною температурою крихкості Ткр.

Поріг холодноламкості можливо визначити також по зовнішньому вигляду зламу, оцінюючу кількість волокна у відсотках матової волокнистої складової. Кількість волокна в зламі визначається як відношення площі волокнистого (в'язкого) зламу до площі перетину зразка. За поріг холодноламкості приймається температура, при якій в зламі спостерігається приблизно рівні площі: по 50% волокнистого і кристалічного (крихкого) зламів.

Така температура і є критичною і позначається Т50. Для відповідальних деталей за критичну вважається температура, при якій зберігається 90% волокна (Т90).

Вплив особливих умов експлуатації на поведінку металевих конструкційних матеріалів

До числа особливих експлуатаційних умов слід віднести: - підвищену температуру, низьку температуру, радіаційне випромінювання, глибокий вакуум.

При експлуатації металевих сплавів під дією підвищених температур проявляються такі їх важливі характеристики як -- жаростійкість і жароміцність. Жаростійкість - властивість металів і сплавів створювати опір окисленню і газовій корозії при високих температурах. Підвищення жаростійкості досягають за рахунок легування хромом, алюмінієм, кремнієм, які утворюють на поверхні плівки, непроникнені для іонів основного металу і кисню-оксидні плівки (Сг203; Аl203). Сприяють підвищенню жаростійкості також захисні покриття, склад яких визначається умовами експлуатації і складом агресивного середовища.

Структура жаростійких матеріалів повинна бути одно фазною і однорідною, чому сприяють такі види термообробки як відпал і нормалізація.

Суттєво підвіщує жаростійкість такий фактор, як чистота обробки поверхні деталей. Поліровані деталі повільніше окислюються, оскільки оксиди більш рівномірно розподілені по поверхні.

Жароміцність - це властивість матеріалу довгий час чинити опір деформуванню і руйнуванню під дією навантажень при підвищених температурах, коли вони сягають величини більше 0,3 Тпл. В таких умовах працюють деталі двигунів внутрішнього згоряння, печей, котлів, турбін і т.ін.

При навантаженні матеріалів довгий час в умовах високих температур спостерігаються процеси повзучості (або крипу), тобто з часом матеріал деформується з певною швидкістю. Найбільш важливий вид повзучості - повільна повзучесть виникає в області температур (0,4...0,7) Тпл матеріалу.

Основними показниками повзучості є швидкість повзучості і умовна межа повзучесті - напруга, яка викликає при даній температурі задану деформацію за встановлений проміжок часу. Умовну межу повзучості позначають символом , МПа. Напр., 130 МПа, позначає, що напруга 130 МПа викликає 1%

деформації за 105 годин при Т=550° С. В умовах, коли проявляється повзучість при тривалих статичних навантаженнях проводять випробування на тривалу міцність - це властивість матеріалу чінити опір руйнуванню в умовах тривалого статичного навантаження. Межа тривалої міцності позначається символом МПа. Наприклад, =150МПа, що позначає - напруга 150 МПа призводить матеріал до руйнування за 105 год при Т=550° С. Основними чинниками, які забезпечують вимоги до жароміцних сплавів є висока ступінь легування такими елементами як Сr, Мо,V і т.п., стабільність структури і міцність кордонів при великозернистій структурі.

В реальних умовах при підвищенних температурах в металевих сплавах спостерігається одночасно з повзучістю і явище втомленості. Явище деформації і руйнування матеріалу під дією циклічних нагрівань і охолоджень носить назву термічної втомленості. В умовах втомленості при високих температурах, як і при повзучості формується субзеренна структура і тріщіни розповсюджуються по межах зерен. Термічна втомленість відрізняється від механічної в основному тим, що напруження визначаються пружно-пластичними властивостями матеріалу. Значення термічних напружень визначають з рівняння:

де Е - модуль пружності; а - коефіцієнт лінійного розширення;

- температурний інтервал; V - коефіцієнт Пуасона.

Величина залежить від теплопроводності матеріалу, умов нагрівання - охолодження і масштабного фактору.

При експлуатації металевих конструкцій в умовах радіаційного випромінювання (космічного, сонячного, технологічного) менш стійким виявляються метали с ГЦК решіткою, ніж метали з ОЦК і ГЩС решітками. Найбільший вплив на властивості мають нейтрони, які не маючи заряда, здатні проникати в глибину кристалічної решітки. При цьому вони викликають порушення електронної структури, локальні підвищення температури, радіаційну ерозію, яка виникає на поверхні під дією високошвидкісних частинок.

Такі дефекти призводять до зміни структурно чутливих властивостивостей, а саме знижується пластичність, в'язкість, підвищується питомий електроопір, міцність і опір малим пластичним деформаціям - оа2, тобто, зростає імовірність крихкого руйнування. Це і є до дії радіації найбільш небезпечним наслідком -- після дії радіації до радіаційного випромінювання. Наприклад, критична температура температури крихкості при крихкості молібдена після дії охолодженні після дії нейтронного випромінювання нейтронного випромінювання підвищується від -ЗО до + 70°С. Загальний характер впливу радіаційного випромінювання на і опір відриву наведені на графіку (рис. 1.5)

Страницы: 1, 2, 3