бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Вибір оптимальних технологічних параметрів виробництва шамотних вогнетривів і їх взаємозв’язок з основними властивостями виробів бесплатно рефераты

Муліт - це вогнетривка основа шамоту. Найчастіше муліт зустрічається в двох кристалічних формах: голчатий та призматичний. Голчатий муліт армірує скловидну фазу, тому вогнетривкість матеріалу, який містить голчатий муліт, вища вогнетривкості матеріалу який містить коротко призматичний муліт, при однаковому хімічному складі.

Велике значення має розміщення глинозему в готових виробах між круглими зернами і зв'язкою. Шлак, проникаючі у вогнетрив або розчинюючи його в першу чергу взаємодіє з матеріалом який прямує до поверхні пор, і з дрібними зернами. Якщо зерновий і речовинний склади шихти підбирати так, що мілкі зерна(зв'язка) будуть місити більше глинозему, то кількість утворившогося розплаву зміниться. Це означає, що має значення не тільки загальний вміст глинозему, скільки вміст його у зв'язці(тонкої частини шихти).

Окрім глиноютворюючих мінералів у глинах містяться домішки. До основних домішок відносять вільний кремнезем та глинозем, колоїдний кремнезем, лужні та лужноземельні оксиди, сполуки заліза, титану та інших металів, органічні домішки. Усі домішки можна розділити на корисні та шкідливі. Корисні вважають, в помірній кількості, польові шпати або світлі слюди, знижаючи температуру випалу глин; глиноземисті мінерали у вигляді гіпсу або діаспора, підвищуючи вогнетривкість, термічну стійкість та інші цінні властивості глин. До шкідливих домішок відносять залізисті мінерали - гідроксиди заліза, пірит, сидерит, карбонати і сульфати кальцію.

Вміст кварциту у вогнетривких глинах до 70% і більше. Кремнезем знижує пластичність і вогнетривкість, підвищує температуру спікання, обсусловлює в деяких випадках розпушування глин при випалі. Карбонати кальцію і магнію розподілені у глинах у вигляді дрібних і крупних зерен і в тонко дисперсному стані являються сильними плавнями. У процесі випалу виробів при температурах 1000°С на короткій ділянці температур швидко розвивається скловидна фаза, яка викликає деформацію виробів. Також шкідливими домішками в глинах являються розчинні солі та хлориди, які знижують вогнетривкість.

Дуже важливе значення для характеристики та технічної оцінки вогнетривких глин має гранулометричний склад.

Глини відносять до напівдисперсних матеріалів. Вони не однорідні за своїм складом, тому зерновий склад одного і того ж типу характеризується значними відхиленнями.

При виробництві багатошамотних виробів звичайно використовують шамот двох, рідше трьох фракцій; при виробництві нормальних шамотних виробів шамот не фракціонують. У двохфракційному шамоті розмір крупної фракції повинен бути по крайній мірі більше дрібної у 10-20 разів. Розмір крупних частинок береться в межах 2-3 мм, так як фракція >3 мм не забезпечує отримання чітких ребер і кутів виробів.

Формовочна здатність маси зменшується із збільшенням в ній вмісту шамота. Покращення формовочної здатності шамотних мас може бути досягнуто вилежуванням.

При виготовленні виробів з напівкислих глин, які мають не велику усадку, кількість опіснювача може бути зменшено або його зовсім виключають. Якщо напівкислі глини опріснювати не шамотним, а кварцовим піском, кварцовими відходами, отриманими при відходженні каоліну, кварцитами і іншими, то усадку напівкислих виробів при випалі можливо повністю усунути і навіть отримати ріст.

2.2 Залежність щільності укладки при пресуванні від зернового складу вогнетривких порошків

Щільність укладки залежить від розміру, форми, стану поверхні і структури частинок сипучого матеріалу.

Чим більше фракцій, тим більше щільність упаковки (але це не завжди технологічно). Встановлено, що для щільної упаковки необхідно брати:

- крупної фракції - 80%;

- середньої - 5%;

- тонкої - 15%.

Крупні фракції утворюють кістяк, пустоти якого заповнюють менші фракції. Такий склад називається безперервний зерновий склад, але він у ряді випадків являється не технологічним:

1. Звичайно фракція 3мм у кількості 80% не дозволяє при пресуванні одержати вироби з чіткими кутами і ребрами, тому крупної фракції беруть менше.

2. Важко від дозувати і рівномірно змішати середню фракцію 5%, так як її мало. Збільшення середньої фракції викликає розсунення крупних зерен, а зменшення супроводжується переміщенням дрібних фракцій із однієї пори у другу, що також веде до розсунення упаковки.

Тому для одержання щільної упаковки зерновий склад вихідного порошку повинен бути перервним, з відношенням розмірів крупної фракції і тонкої приблизно 100:1.

Таким чином розрізняють два основні принципи підбора укладок, які ефективно знижують пустотність:

Безперервні укладки, тобто такі які основані на заповненні об'єму усіх розмірів, від деяких верхніх до мінімальних (близьких нулю).

Перервні укладки, такі при яких між зернами заданних фракцій, зерна проміжних (середніх) фракцій відсутні.

Щоб одержати щільну упаковку заповнювача у бетонах використовують формулу Фуллєра, згідно якої розраховують кількість відповідних фракцій заповнювача.

,

де dі - розмір будь-якої заданої проміжної фракції суміші, мм;

D - розмір самої крупної фракції, мм;

Уі - кількість фракцій яка проходить через сито з чарункою розміру.

Отже пористість зразків знижується зі збільшенням тонкомолотого компоненту. Вміст тонкомеленого компонента в шихті чинить більший вплив на пористість ніж зерновий склад зернистої частини.

При оптимальному місті тонкомеленої фракції пористість сирцю зумовлена пористістю самих крупних зерен. Укрупнення зернового складу підвищує термостійкість, але підвищує і пористість. Мінімальній пористості відповідає максимальна щільність.

2.3 Вплив параметрів пресування на ущільнення вогнетривких мас

Оптимальний зерновий склад сам по собі ще не забезпечує одержання щільних пресовок.

Тиск пресування і вологість маси - це параметри які в значній мірі впливають на ущільнення.

Щоб отримати гарну щільність потрібно правильно підібрати зв'язку. В'яжуче повинно:

- надавати високу міцність сирцю;

- легко розкладатися і видалятися при випалі при відносно низьких температурах;

- не прилипати до поверхні прес-форми і пуансонів;

- добре розчинятися у вогнетривкій масі та ін.

У процесі стиснення керамічного порошку беруть участь усі три складові частини системи, яка пресується:

1. мінеральна частина (тверда фаза);

2. технологічна зв'язка (рідка фаза);

3. повітря (газоподібна фаза).

На початку стиснення відбувається переміщення твердих частинок, пресування проходить при невисокому тиску.

На початковій стадії стиснення іде зростання щільності, стійке положення структурних елементів, при відносно невеликому збільшенні поверхні контактів.

Подальше стиснення порошку стає неможливим без суттєвої деформації структурних елементів.

Вода або інша рідина яка виконує роль тимчасової технологічної зв'язки знаходиться у вихідному порошку:

- на поверхні частинок;

- у прошарках між частинками;

- у капілярах.

У процесі стиснення рідка фаза чинить пластифікуючи дію, яка заклечається у полегшенні ковзання частинок, що приводить до більш інтенсивного ущільнення. А в області більш високого тиску інтенсифікує ущільнення внаслідок зниження твердості і міцності частинок (ефект Ребіндера).

Таким чином рідка технологічна зв'язка зменшує тверді частинки, утворює вологі контакти між ними, підвищує пластичність і знижує сили тертя при пресуванні, чинить кращу і рівномірну пропресовку по законам капілярних сил стягування частинок порошку, збільшує сили Ван-дер-Ваальса які притягують частинки одну до одної. У цьому полягає позитивний ефект рідкої фази.

Але переміщення рідини у стискуючому порошку дає деякий негативний ефект.

Рідина яка знаходиться у прошарках між частинками може вижиматися у більш крупні пори системи. По мірі стиску і зменшенню загального об'єму пор частка рідини у цьому об'ємі пор зростає і якщо задана кількість рідини достатньо велика, то її об'єм може бути рівним начальному об'єму пор: система переходить з трьохфазної у двофазну. У цьому випадку спостерігається граничне ущільнення систем або критична щільність "тиск при якому наступає явище називається "критичним". При переході в критичний тиск подальше стиснення системи переходить цілком до оборотної пружної деформації, яка не бажана.

Надлишок рідкої фази шкідливий. Він збільшує пружне розширення, сприяє утворенню тріщин розшарування, а при наявності великої кількості тонкозернистої фракції викликає грудкування маси і перешкоджає рівномірному розподілу тонких фракцій в об'ємі, взагалі переміщенню частинок.

Тому кількість технологічної зв'язки повинно бути оптимальним. При напівсухому пресуванні вміст зв'язки складає звичайно від 2-3 до 9-12%, в окремих випадках підвищується до15%.

Повітря яке знаходиться при пресуванні у порошці у всіх випадках відіграє негативну роль:

- ускладнює засипку;

- знижує початкову щільність укладки частинок і перешкоджає рівномірності їх розпоідлу

- створює нерівномірну щільність пресовки

- підвищує залишкові і пружні деформації.

Існує прямо пропорційна залежність тиску пресування і щільності пре совки. Чим більший тиск пресування, тим вища його щільність.

Рівняння Бережного - це рівняння впливу тиску пресування на щільність пре совки в залежності від властивостей преспорошку

е = a- b·lgP,%

де a, b - постійні для даної маси; a - характеризує пористість маси перед пресуванням; b - відображає здатність маси до ущільнення.

Р - зусилля пресування;

е - істина пористість, %

З метою одержання сирцю з мінімальною пористістю при даному тиску знаходять дослідним шляхом такий склад маси і спосіб її переробки при якому значення відношення а:b буде мінімальним. Рівняння Бережного використовують для описання закономірностей пресування вогнетривів з мало пластичних мас,а також можна для більш пластичних глинистих мас, високодисперсних, гранульованих без глинистих порошків.

2.4 Особливості процесів структурно-фазових перетворень при термічній обробці шамотних вогнетривів

Випал - це завершальна стадія технологічного виробництва вогнетривів. У процесі випалу відбувається спікання.

З технологічної точки зору спікання - це процес одержання міцного мало пористого або без пористого камнеподібного тіла з вільно насипаної і спресованої порошкової маси під дією високих температур.

Основні ознаки спікання: зниження пустот, при цьому спостерігається усадка, зниження пористості.

При спіканні можливі слідуючи внутрішні процеси: зміна кількості, розмірів, і форми пор; ріст зерен; зниження і вирівнювання залишкових після пресування напруг; утворення рідкої фази; перерозподіл фаз, зміна концентрації дефектів у кристалічних фазах: хімічні реакції; поліморфічні перетворення; утворення нових сполук і твердих розчинів.

Розм'якшення шамотних вогнетривів протікає слідуючим чином: вогнетривка глина, з якої виготовляють шамотні вироби, при випалі притерпівають ряд перетворень в результаті яких утворюється близько 50% кристалічного муліту 3Al2O3 *2SiO2 (71/8% Al2O3 і 28.2% SiO2), а останнє представляє собою кремнеземисту (аморфну) скловидну речовину високої в'язкості:

При випалі в глинах і каолінах відбуваються складні і глибокі зміни: виявляється вогнева усадка, змінюється мінералогічний склад, при нагріванні до 400°С поступово видаляється слабо зв'язана вода з кристалічних ґрат каолініту.

В інтервалі 450 - 600°С видаляється хімічно зв'язана вода внаслідок розкладання каолініту по реакції:

А12О3 2 SiO2 2 Н2О> [А12О3 + 2 SіО2] + 2 Н2О.

Реакція йде з поглинанням тепла (ендотермічний ефект). [А12О3 + 2 SiO2] -аморфний продукт, що представляє собою не механічну, а більш тісну суміш глинозему і кремнезему з взаємним проникненням компонентів і частковим збереженням структури каолінітової ґрати. Аморфний лтродукт складу [А12О3*2SіО2] називають метакаолінітом. Каолініт, позбавлений хімічно зв'язаної вологи, необоротно втрачає пластичність.

При 900°С відбувається кристалізація муліту.

При 1100 - 1250°С йде перехід у кристобаліт аморфного кремнезему, що лишився після розпаду каолініту.

При 400 - 1000°С карбонати дисоціюють з виділенням вуглекислоти, сульфіди окисляються з утворенням сірчистого газу, органічні домішки вигорають. Перераховані процеси супроводжуються значною втратою маси, деяким збільшенням пористості і зменшенням об'єму. Механічна міцність при цьому не зменшується, а збільшується. При температурі 1100°С з виділенням тепла метакаолініт перебудовується з утворенням у кінцевій стадії муліту, ЗА12О3- 2 SiO2:

3 [А12О32 SiO2] > ЗА12О32 SiO2 + 4SiO2.

З ростом температури кількість муліту безупинно збільшується і досягає максимуму при 1250 - 1350°С. Тривала витримка при температурах понад 1200°С не впливає на збільшення виходу муліту, але сприяє росту його кристалів. Одночасно з утворенням муліту йде процес спікання. Температура початку гання відповідає різкій зміні усадки. За температуру закінчення спікання 'иймають ту, при якій усадка практично припиняється, а водопоглинання іеченої глини буде близько 2%.

Температура початку і закінчення спікання залежить не від вогнетривкості глин, а від їхньої хімічної і мінералогічної сполук і дисперсності.

При випалі глин і каолінів у них одночасно з мулітом і кристобалітом утвориться аморфна частина і рідка фаза (після охолодження - склофаза). Луги сильно взаємодіють з кристобалітом і, переводять його в рідку фазу, кількість якої безпосередньо залежить від змісту лугів в алюмосилікатах.

Склоподібна частина утвориться в результаті плавлення домішок і частково розчинення кристобаліта в його метастабільної субмікроскопічної формі. Хімічний склад склоподібної частини залежить від загального складу глини чи каоліну до випалу і кількості утворившогося муліту.

2.5 Теоретичні аспекти границі міцності при стиску шамотних вогнетривів для футеровки вагранок та шляхи її поліпшення

Згідно з умовами служби шамотних виробів для футеровеи вагранок марки ШБВ вони повинні мати слідуючи властивості:

1.Границя міцності при стиску

Міцність твердих тіл характеризується силами взаємодії між атомами або іонами, які складають тіло. Міцність залежить не тільки від хімічного складу речовини, але і від виду напруженого стану (розтяг, стиск, вигин та ін.), від умов експлуатації (температура, швидкість навантаження, вплив навколишнього середовища та ін.), а також від структури.

Вогнетриви при кімнатній температурі характеризуються крихким

руйнуванням, яке звичайно наступає після незначної 0,01-0,02% оборотної (пружної) деформації і невеликої по величині пластичної (необоротної), яка зумовлюється мікроруйнуванням. Загальна деформація у вогнетривів доходить до 0,3-0,7%.

В межах пружної деформації до вогнетривів можна застосувати закон Гука, відповідно якому в невеликому інтервалі деформацій

у /е =Е; у = е · Е

де Е - модуль пружності, Н/мм2; е - відносна деформація; у - напруга, Н/мм2.

Модуль пружності Е (модуль Юнга) - це фізична величина, яка характеризує властивості матеріалу, а саме у кристалах характеризує силу хімічного зв'язку структурних елементів у ґратках.

Пружна деформація зв'язана із збільшенням відстані між атомами речовини при прикладенні навантаження і залежить від енергії кристалічних ґраток. Пружна деформація зв'язана із збільшенням відстані між атомами речовини при прикладенні навантаження і залежить від енергії кристалічних ґраток. Цей зв'язок виражається залежністю модуля пружності від температури плавлення. Підрахована теоретична міцність (ут) міжатомного зв'язку кристалів оксидів і оксидних стекол, яка визначається модулем пружності Е, поверхневою енергією твердого тіла у1 і, параметром ґраток л

ут=v2Е у1/ л

і складає 104 Н/мм2 (Е ?105Н/мм2).

У вогнетривів звичайно спостерігається відхилення від лінійної залежності у=f(е), не зв'язане з енергією ґраток, а зв'язане зі структурою матеріалу. У зв'язку з цим пружність вогнетривів характеризується двома модулями: дотичним модулем Юнга Е = tg л і січним V = tgв, або модулем деформації (рис.2.1).

Рис.2.1. Схематичне зображення деформації вогнетривів:

а - крива деформації; б - точка руйнування; уст -- границя міцності при руйнуванні (стиску); еn, - деформація

Страницы: 1, 2, 3, 4