бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Установки ожижения и разделения газовых смесей бесплатно рефераты

ДТсринт = n/У(1/ДТср)

ДТср

1/ДТср

1

40

0,025

2

37

0,027

3

38

0,026

4

39

0,0256

5

41

0,0244

6

43

0,0233

7

45

0,0222

8

47

0,0213

9

50

0,02

10

50

0,02

У(1/ДТср) = 0,235

ДТср = 10/0,245 = 42,6 К

д) Расчёт основного теплообменника.

Для расчёта теплообменника разбиваем его на 2 трёхпоточных. Для удобства расчёта исходные данные сводим в таблицу.

Поток

Рср, ат.

Тср, К

Ср, кДж/кгК

Уд. Объём v, м3/кг

м, кг*с/м2

*107

л, Вт/мК, *103

Прямой

(воздух)

45

226,5

1,187

0,005

18,8

23,6

Обратный

(О2 под дав)

100

190

2,4

0,00106

108

15

Обратный

(N2 низ дав)

1,3

155

1,047

0,286

9,75

35,04

Прямой поток.

1)Скорость потока принимаем щ = 1 м/с

2) Секундный расход

Vсек = V*v/3600 = 1711*0,005/3600 = 2,43*10-3 м3/с

3) Выбираем тубку ф 12х1,5 мм

4) Число трубок

n = Vсек/0,785dвн щ = 0,00243/0,785*0,0092*1 = 39 шт

Эквивалентный диаметр

dэкв = 9 - 5 = 4 мм

5) Критерий Рейнольдса

Re = щ dвнс/gм = 1*0,004*85,4/9,81*18,8*10-7 = 32413

6) Критерий Прандтля

Pr = 0,802 (см. [2])

7) Критерий Нуссельта:

Nu = 0,023 Re0,8 Pr0,33 = 0,015*324130,8*0,8020,33 = 63,5

8) Коэффициент теплоотдачи:

бВ = Nuл/dвн = 63,5*23,6*10-3/0,007 = 214,1 Вт/м2К

Обратный поток (кислород под давлением):

1)Скорость потока принимаем щ = 1 м/с

2) Секундный расход

Vсек = V*v/3600 = 320*0,0011/3600 = 9,8*10-5 м3/с

3) Выбираем тубку ф 5х0,5 мм гладкую.

4) Критерий Рейнольдса

Re = щ dвнс/gм = 1*0,007*330,1/9,81*106*10-7 = 21810

5) Критерий Прандтля

Pr = 1,521 (см. [2])

6) Критерий Нуссельта:

Nu = 0,023 Re0,8 Pr0,4 = 0,015*218100,8*1,5210,33 = 80,3

7) Коэффициент теплоотдачи:

бВ = Nuл/dвн = 80,3*15*10-3/0,007 = 172 Вт/м2К

Обратный поток (азот низкого давления)

1)Скорость потока принимаем щ = 15 м/с

2) Секундный расход

Vсек = V*v/3600 = 1391*0,286/3600 = 0,11 м3/с

3) Живое сечение для прохода обратного потока:

Fж = Vсек/щ = 0,11/15 = 0,0074 м2

4) Диаметр сердечника принимаем Dc = 0,1 м

4) Критерий Рейнольдса

Re = щ dвнс/gм = 15*0,004*2,188/9,81*9,75*10-7 = 34313

5) Критерий Нуссельта:

Nu = 0,0418 Re0,85 = 0,0418*343130,85=299,4

7) Коэффициент теплоотдачи:

бВ = Nuл/dвн = 299,4*35,04*10-3/0,01 = 1049 Вт/м2К

Параметры всего аппарата:

1) Тепловая нагрузка азотной секции

QA = AДiA/3600 = 1391*(454,6 - 381,33)/3600 = 28,3 кВт

2) Среднеинтегральная разность температур ДТср = 54,7 К

3) Коэффициент теплопередачи

КА = 1/[(1/бв)*(Dн/Dвн) + (1/бА)] = 1/[(1/214,1)*(0,012/0,009) + (1/1049)] = 131,1 Вт/м2 К

4) Площадь теплопередающей поверхности

FA = QA/KA ДТср = 28300/131,1*54,7 = 3,95 м2

5) Средняя длина трубки с 20% запасом

lА = 1,2FA /3,14DHn = 1,2*3,95/3,14*0,012*32 = 3,93 м

6) Тепловая нагрузка кислородной секции

QК = КДiA/3600 = 0,183*(467,93 - 332)/3600 = 15,1 кВт

7) Коэффициент теплопередачи

КК = 1/[(1/бв) + (1/бК) *(Dн/Dвн)] = 1/[(1/214,1) + (1/172) *(0,01/0,007)]=77 Вт/м2 К

8) Площадь теплопередающей поверхности

FК = QК/KК ДТср = 15100/77*25 = 7,8 м2

9) Средняя длина трубки с 20% запасом

lК = 1,2FК /3,14DHn = 1,2*7,8/3,14*0,01*55 = 5,42 м

Принимаем l = 5,42 м.

10) Теоретическая высота навивки.

Н = lt2/рDср = 17*0,0122/3,14*0,286 = 0,43 м.

Второй теплообменник.

Поток

Рср, ат.

Тср, К

Ср, кДж/кгК

Уд. Объём v, м3/кг

м, кг*с/м2

*107

л, Вт/мК, *103

Прямой

(воздух)

45

155,5

2,328

0,007

142,62

23,73

Обратный

(О2 под дав)

100

132,5

1,831

0,00104

943,3

106,8

Обратный

(N2 низ дав)

1,3

112,5

1,061

0,32

75,25

10,9

Прямой поток.

1)Скорость потока принимаем щ = 1 м/с

2) Секундный расход

Vсек = V*v/3600 = 1875*0,007/3600 = 2,6*10-3 м3/с

3) Выбираем тубку ф 10х1,5 мм гладкую.

4) Число трубок

n = Vсек/0,785dвн щ = 0,0026/0,785*0,0072*1 = 45 шт

Эквивалентный диаметр

dэкв = 9 - 5 = 4 мм

5) Критерий Рейнольдса

Re = щ dвнс/gм = 1*0,004*169,4/9,81*142,62*10-7 = 83140

6) Критерий Прандтля

Pr =1,392 (см. [2])

7) Критерий Нуссельта:

Nu = 0,023 Re0,8 Pr0,33 = 0,015*831400,8*1,3920,33 = 145

8) Коэффициент теплоотдачи:

бВ = Nuл/dвн = 145*10,9*10-3/0,007 = 225,8 Вт/м2К

Обратный поток (кислород под давлением):

1)Скорость потока принимаем щ = 1 м/с

2) Секундный расход

Vсек = V*v/3600 = 800*0,00104/3600 = 1,2*10-4 м3/с

3) Выбираем тубку ф 10х1,5 мм с оребрением из проволоки ф 1,6 мм и шагом оребрения tп = 5,5мм

4) Критерий Рейнольдса

Re = щ dвнс/gм = 1*0,007*1067,2/9,81*75,25*10-7 = 101200

5) Критерий Прандтля

Pr = 1,87 (см. [2])

6) Критерий Нуссельта:

Nu = 0,023 Re0,8 Pr0,4 = 0,015*1012000,8*1,870,33 = 297,2

7) Коэффициент теплоотдачи:

бВ = Nuл/dвн = 297,2*10,9*10-3/0,007 = 462,8 Вт/м2К

Обратный поток (азот низкого давления)

1)Скорость потока принимаем щ = 15 м/с

2) Секундный расход

Vсек = V*v/3600 = 2725*0,32/3600 = 0,242 м3/с

3) Живое сечение для прохода обратного потока:

Fж = Vсек/щ = 0,242/15 = 0,016 м2

4) Диаметр сердечника принимаем Dc = 0,1 м

4) Критерий Рейнольдса

Re = щ dвнс/gм = 15*0,01*3,04/9,81*75,25*10-7 = 60598

5) Критерий Нуссельта:

Nu = 0,0418 Re0,85 = 0,0418*605980,85=485,6

7) Коэффициент теплоотдачи:

бВ = Nuл/dвн = 485,6*10,9*10-3/0,01 = 529,3 Вт/м2К

Параметры всего аппарата:

1) Тепловая нагрузка азотной секции

QA = AДiA/3600 = 2725(391,85 - 333,5)/3600 = 57 кВт

2) Среднеинтегральная разность температур ДТср = 52 К

3) Коэффициент теплопередачи

КА = 1/[(1/бв)*(Dн/Dвн) + (1/бА)] = 1/[(1/225,8)*(0,01/0,007) + (1/529,3)] = 121,7 Вт/м2 К

4) Площадь теплопередающей поверхности

FA = QA/KA ДТср = 57000/121,7*52 = 9 м2

5) Средняя длина трубки с 20% запасом

lА = 1,2FA /3,14DHn = 1,2*9/3,14*0,01*45 = 7,717 м

6) Тепловая нагрузка кислородной секции

QК = КДiК/3600 = 0,128*(352,8 - 332)/3600 = 4,6 кВт

7) Коэффициент теплопередачи

КК = 1/[(1/бв) + (1/бК) *(Dн/Dвн)] = 1/[(1/225,8) + (1/529,3) *(0,01/0,007)] = 140,3 Вт/м2 К

8) Площадь теплопередающей поверхности

FК = QК/KК ДТср = 4600/140*42,6 = 0,77 м2

9) Средняя длина трубки с 20% запасом

lК = 1,2FК /3,14DHn = 1,2*0,77/3,14*0,01*45 = 0,654 м

Принимаем l = 7,717 м.

10) Теоретическая высота навивки.

Н = lt2/рDср = 7,717*0,0122/3,14*0,286 = 0,33 м.

Окончательный вариант расчёта принимаем на ЭВМ.

6. Расчёт блока очистки.

Исходные данные:

Количество очищаемого воздуха …………………… V = 2207,5 кг/ч = 1711 м3/ч

Давление потока …………………………………………… Р = 4,5 МПа

Температура очищаемого воздуха………………………… Т = 275 К

Расчётное содержание углекислого газа по объёму …………………...С = 0,03%

Адсорбент ……………………………………………………NaX

Диаметр зёрен ………………………………………………. dз = 4 мм

Насыпной вес цеолита ………………………………………гц = 700 кг/м3

Динамическая ёмкость цеолита по парам СО2 ……………ад = 0,013 м3/кг

Принимаем в качестве адсорберов стандартный баллон диаметром Da = 460 мм и высоту слоя засыпки адсорбента

L = 1300 мм.

2) Скорость очищаемого воздуха в адсорбере:

щ = 4Va/nрDa2

n - количество одновременно работающих адсорберов;

Vа - расход очищаемого воздуха при условиях адсорбции, т. е. при Р = 4,5 МПа и Тв = 275 К:

Va = VTB P/T*PB = 1711*275*1/273*45 = 69,9 кг/ч

щ = 4*69,9/3*3,14*0,462 = 140,3 кг/ч*м2

Определяем вес цеолита, находящегося в адсорбере:

Gц = nVад гц = L*г*n*р*Da2/4 = 1*3,14*0,462*1,3*700/4 = 453,4 кг

Определяем количество СО2 , которое способен поглотить цеолит:

VCO2 = Gц*aд = 453,4*0,013 = 5,894 м3

Определяем количество СО2, поступающее каждый час в адсорбер:

VCO2' = V*Co = 3125*0,0003 = 0,937 м3/ч

Время защитного действия адсорбента:

фпр = VCO2/ VCO2' = 5,894/0,937 = 6,29 ч

Увеличим число адсорберов до n = 4. Тогда:

щ = 4*69,9/4*3,14*0,462 = 105,2 кг/ч*м2

Gц = 4*3,14*0,462*1,3*700/4 = 604,6 кг

VCO2 = Gc *aд = 604,6*0,013 = 7,86 м3

фпр = 7,86/0,937 = 8,388 ч.

Выбираем расчётное время защитного действия фпр = 6 ч. с учётом запаса времени.

2) Ориентировочное количество азота для регенерации блока адсорберов:

Vрег = 1,2*GH2O /x' фрег

GH2O - количество влаги, поглощённой адсорбентом к моменту регенерации

GH2O = GцаН2О = 604,2*0,2 = 120,84 кг

фрег - время регенерации, принимаем

фрег = 0,5 фпр = 3 ч.

х' - влагосодержание азота при Тср.вых и Р = 105 Па:

Тср.вых = (Твых.1 + Твых.2)/2 = (275 + 623)/2 = 449 К

х = 240 г/м3

Vрег = 1,2*120,84/0,24*3 = 201,4 м3/ч

Проверяем количество регенерирующего газа по тепловому балансу:

Vрег *сN2*CpN2*(Твх + Твых. ср)* фрег = УQ

УQ = Q1 + Q2 + Q3 + Q4 + Q5

Q1 - количество тепла, затраченное на нагрев металла;

Q2 - количество тепла, затраченное на нагрев адсорбента,

Q3 - количество тепла, необходимое для десорбции влаги, поглощённой адсорбентом;

Q4 - количество тепла, необходимое для нагрева изоляции;

Q5 - потери тепла в окружающую среду.

Q1 = GмСм(Тср' - Tнач' )

Gм - вес двух баллонов с коммуникациями;

См - теплоёмкость металла, См = 0,503 кДж/кгК

Tнач' - температура металла в начале регенерации, Tнач' = 280 К

Тср' - средняя температура металла в конце процесса регенерации,

Тср' = (Твх' + Твых' )/2 = (673 + 623)/2 = 648 К

Твх' - температура азота на входе в блок очистки, Твх' = 673 К;

Твых' - температура азота на выходе из блока очистки, Твх' = 623 К;

Для определения веса блока очистки определяем массу одного баллона, который имеет следующие геометрические размеры:

наружний диаметр ……………………………………………….Dн = 510 мм,

внутренний диаметр ……………………………………………..Dвн = 460 мм,

высота общая ……………………………………………………..Н = 1500 мм,

высота цилиндрической части …………………………………..Нц = 1245 мм.

Тогда вес цилиндрической части баллона

GM' = (Dн2 - Dвн2)Нц*гм*р/4 = (0,512 - 0,462)*1,245*7,85*103*3,14/4 = 372,1 кг,

где гм - удельный вес металла, гм = 7,85*103 кг/м3.

Вес полусферического днища

GM'' = [(Dн3/2) - (Dвн3/2)]* гм*4р/6 = [(0,513/2) - (0,463/2)]*7,85*103*4*3,14/6 = 7,2 кг

Вес баллона:

GM' + GM'' = 382 + 7,2 = 389,2 кг

Вес крышки с коммуникациями принимаем 20% от веса баллона:

GM''' = 389,2*0,2 = 77,84 кг

Вес четырёх баллонов с коммуникацией:

GM = 4(GM' + GM'' + GM''' ) = 4*(382 + 7,2 + 77,84) = 1868 кг.

Тогда:

Q1 = 1868*0,503*(648 - 275) = 3,51*105 кДж

Количество тепла, затрачиваемое на нагревание адсорбента:

Q2 = GцСц(Тср' - Tнач' ) = 604,6*0,21*(648 - 275) = 47358 кДж

Количество тепла, затрачиваемое на десорбцию влаги:

Q3 = GH2OCp(Ткип - Тнач' ) + GH2O*е = 120,84*1*(373 - 275) + 120,84*2258,2 = 2,8*105 кДж

е - теплота десорбции, равная теплоте парообразования воды; Ср - теплоёмкость воды.

Количество тепла, затрачиваемое на нагрез изоляции:

Q4 = 0,2Vиз гизСиз(Тиз - Тнач) = 0,2*8,919*100*1,886*(523 - 275) = 8,3*104 кДж

Vиз = Vб - 4Vбалл = 1,92*2,1*2,22 - 4*0,20785*0,512*0,15 = 8,919 м3 - объём изоляции.

гиз - объёмный вес шлаковой ваты, гиз = 100 кг/м3

Сиз - средняя теплоёмкость шлаковой ваты, Сиз = 1,886 кДж/кгК

Потери тепла в окружающую среду составляют 20% от УQ = Q1 + Q2 + Q4 :

Q5 = 0,2*(3,51*105 + 47358 + 8,3*104 ) = 9.63*104 кДж

Определяем количество регенерирующего газа:

Vрег = (Q1 + Q2 + Q3 + Q4 + Q5)/ сN2*CpN2*(Твх + Твых. ср)* фрег =

=(3,51*105 + 47358 + 2,8*105 + 8,3*104 + 9,63*104)/(1,251*1,048*(673 - 463)*3) = 1038 нм3/ч

Проверяем скорость регенерирующего газа, отнесённую к 293 К:

щрег = 4 Vрег*293/600*р*Da2 *n*Tнач = 4*1038*293/600*3,14*0,462*2*275 = 5,546 м/с

n - количество одновременно регенерируемых адсорберов, n = 2

Определяем гидравлическое сопротивление слоя адсорбента при регенерации.

ДР = 2fсLщ2/9,8dэх2

где ДР - потери давления, Па;

f - коэффициент сопротивления;

с - плотность газа, кг/м3;

L - длина слоя сорбента, м;

dэ - эквивалентный диаметр каналов между зёрнами, м;

щ - скорость газа по всему сечению адсорбера в рабочих условиях, м/с;

а - пористость слоя адсорбента, а = 0,35 м2/м3.

Скорость регенерирующего газа при рабочих условиях:

щ = 4*Vрег*Твых.ср./3600*р*Da2*n*Тнач = 4*1038*463/3600*3,14*0,462*2*275 = 1,5 м/с

Эквивалентный диаметр каналов между зёрнами:

dэ = 4*а*dз/6*(1 - а) = 4*0,35*4/6*(1 - 0,35) = 1,44 мм.

Для определения коэффициента сопротивления находим численное значение критерия Рейнольдса:

Re = щ*dэ*г/а*м*g = 1,5*0,00144*0,79*107/0,35*25*9,81 = 198,8

где м - динамическая вязкость, м = 25*10-7 Па*с;

г - удельный вес азота при условиях регенерации,

г = г0 *Р*Т0/Р0*Твых.ср = 1,251*1,1*273/1,033*463 = 0,79 кг/м3

По графику в работе [6] по значению критерия Рейнольдса определяем коэффициент сопротивления f = 2,2

Тогда:

ДР = 2*2,2*0,79*1,3*1,52/9,81*0,00144*0,352 = 587,5 Па

Определяем мощность электроподогревателя:

N = 1,3* Vрег*с*Ср*(Твх - Тнач)/860 = 1,3*1038*1,251*0,25(673 - 293)/860 = 70,3 кВт

где Ср = 0,25 ккал/кг*К

7. Определение общих энергетических затрат установки

l = [Vсв RToc ln(Pk/Pn)]/зиз Кж*3600 = 1711*0,287*296,6*ln(4,5/0,1)/0,6*320*3600 = 0,802 кВт

где V - полное количество перерабатываемого воздуха, V = 2207,5 кг/ч = 1711 м3/ч

св - плотность воздуха при нормальных условиях, св = 1,29 кг/м3

R - газовая постоянная для воздуха, R = 0,287 кДж/кгК

зиз - изотермический КПД, зиз = 0,6

Кж - количество получаемого кислорода, К = 320 м3/ч

Тос - температура окружающей среды, принимается равной средне - годовой температуре в городе Владивостоке, Тос = 23,60С = 296,6 К

8. Расчёт процесса ректификации.

Расчёт процесса ректификации производим на ЭВМ (см. распечатки 4 и 5).

Вначале проводим расчёт нижней колонны. Исходные данные вводим в виде массива. Седьмая

строка массива несёт в себе информацию о входящем в колонну потоке воздуха: принимаем, что в нижнюю часть нижней колонны мы вводим жидкий воздух.

1 - фазовое состояние потока, жидкость;

0,81 - эффективность цикла. Поскольку в установке для ожижения используется цикл Гейландта (х = 0,19), то эффективность установки равна 1 - х = 0,81.

0,7812 - содержание азота в воздухе;

0,0093 - содержание аргона в воздухе;

0,2095 - содержание кислорода в воздухе.

Нагрузку конденсатора подбираем таким образом, чтобы нагрузка испарителя стремилась к нулю.

8. Расчёт конденсатора - испарителя.

Расчёт конденсатора - испарителя также проводим на ЭВМ с помощью программы, разработанной Е. И. Борзенко.

В результате расчёта получены следующие данные (смотри распечатку 6):

Коэффициент телоотдачи в испарителе……….……….ALFA1 = 1130,7 кДж/кгК

Коэффициент телоотдачи в конденсаторе…………… ALFA2 = 2135,2 кДж/кгК

Площадь теплопередающей поверхности………………..………F1 = 63,5 м3

Давление в верхней колонне ………………………………………Р1 = 0,17 МПа.

10. Подбор оборудования.

1. Выбор компрессора.

Выбираем 2 компрессора 605ВП16/70.

Производительность одного компрессора ………………………………..16±5% м3/мин

Давление всасывания……………………………………………………….0,1 МПа

Давление нагнетания………………………………………………………..7 МПа

Потребляемая мощность…………………………………………………….192 кВт

Установленная мощность электродвигателя………………………………200 кВт

2. Выбор детандера.

Выбираем ДТ - 0,3/4 .

Характеристики детандера:

Производительность…………………………………………………… V = 340 м3/ч

Давление на входе ………………………………………………………Рвх = 4 МПа

Давление на выходе …………………………………………………….Рвых = 0.6 МПа

Температура на входе …………………………………………………..Твх = 188 К

Адиабатный КПД ……………………………………………………….зад = 0,7

3. Выбор блока очистки.

Выбираем стандартный цеолитовый блок осушки и очистки воздуха ЦБ - 2400/64.

Характеристика аппарата:

Объёмный расход воздуха ……………………………….V=2400 м3/ч

Рабочее давление:

максимальное ……………………………………………Рмакс = 6,4 МПа

минимальное………………………………………..……Рмин = 3,5 МПа

Размеры сосудов…………………………………………750х4200 мм.

Количество сосудов……………………………………..2 шт.

Масса цеолита …………………………………………..М = 2060 кг

Список используемой литературы:

Акулов Л.А., Холодковский С.В. Методические указания к курсовому проектированию криогенных установок по курсам «Криогенные установки и системы» и «Установки сжижения и разделения газовых смесей» для студентов специальности 1603. - СПб.; СПбТИХП, 1994. - 32 с.

Акулов Л.А., Борзенко Е.И., Новотельнов В.Н., Зайцев А.В.Теплофизические свойства криопродуктов. Учебное пособие для ВУЗов. - СПб.: Политехника, 2001. - 243 с.

Архаров А.М. и др. Криогенные системы: Основы теории и расчёта: Учебное пособие для ВУЗов, том 1., - М.: Машиностроение, 1998. - 464 с.

Архаров А.М. и др. Криогенные системы: Основы теории и расчёта: Учебное пособие для ВУЗов, том 2., - М.: Машиностроение, 1999. - 720 с.

Акулов Л.А., Холодковский С.В. Криогенные установки (атлас технологических схем криогенных установок): Учебное пособие. - СПб.: СПбГАХПТ, 1995. - 65 с.

6. Кислород. Справочник в двух частях. Под ред. Д. Л. Глизманенко. М., «Металлургия», 1967.

Страницы: 1, 2, 3