бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Механизмы компрессора бесплатно рефераты

Механизмы компрессора

КУРСОВОЙ ПРОЕКТ
на тему: «Механизмы компрессора»

1. Структурный анализ механизмов

1.1 Структурный анализ рычажного механизма

Рисунок 1.1. Подвижные звенья механизма

1-кривошип

2-шатун

3-ползун

4-шатун

5-ползун

Кинематические пары.

О (0-1),вр.,5 кл.

А (1-4),вр.,5 кл.

А'(1-2),вр.,5 кл.

В (2-3),вр.,5 кл.

В'(3-0),пост.,5 кл.

С (4-5),вр.,5 кл.

С'(5-0),пост.,5 кл.

Найдём число степеней свободы.

Запишем формулу Чебышева.

W=3•n-2•P5-P4 (1.1)

Где, W-число степеней свободы,

n-число подвижных звеньев,

P4 - число пар 4-го класса,

P5 - число пар 5-го класса.

W=3•5-2•7=1

Число степеней свободы рычажного механизма равно 1.

Разобьём механизм на группы Асура и рассмотрим каждую группу в отдельности.

Группа 2-3 (Рисунок 1.2)

A'(1-2)-внешняя

B'(3-0)-внешняя

B (2-3)-внутренняя

W=3•2-2•3=0

II кл. 2 вид Рисунок 1.2

Группа 4-5 (Рисунок 1.3)

А (1-4)-внешняя

С' (5-0)-внешняя

C (4-5)-внутренняя

W=3•2-2•3=0

II кл. 2 вид

O (0-1)

W=3-2=1

Рисунок 1.4

Составим структурную формулу:

Механизм является механизмом 2кл.,2в..

1.2 Структурный анализ зубчатого механизма

Рисунок 1.5. Подвижные звенья механизма

1 - центральное колесо

2 - сателлит

3 - зубчатое колесо

H - водило

4 - зубчатое колесо

5 - зубчатое колесо

Кинематические пары.

(1-0),вр.,5 кл.

(5-0),вр.,5 кл.

(2-H),вр.,5 кл.

(4-0),вр.,5 кл.

(1-2),вр.,4 кл.

(2-3),вр.,4 кл.

(4-5),вр.,4 кл.

Найдём число степеней свободы.

Исходя из формулы Чебышева имеем,

W=3•4-2•4-3=1

Число степеней свободы зубчатого механизма равно 1, следовательно, данный механизм является планетарным.

1.3 Структурный анализ кулачкового механизма

Рисунок 1.6. Подвижные звенья механизма

1-кулачок

2-ролик

3-коромысло

Кинематические пары.

О (1-0),вр.,5 кл.

А (3-0),вр.,5 кл.

В (2-3),вр.,5 кл.

С (1-2),пост.,4 кл.

Найдём число степеней свободы.

W=3•n-2•P5-P4

W=3•3-2•3-1=2

Число степеней свободы равно 2.

Так как W?1, то присутствует лишнее звено - ролик.

2. Динамический анализ рычажного механизма

2.1 Определение скоростей

Для заданной схемы механизма строим 12 положений.

Определяем масштабный коэффициент построения механизма:

(2.1)

где, - масштабный коэффициент,

- длина звена,

- длина звена на чертеже,

Запишем длинны звеньев механизма на чертеже

Приступаем к построению повёрнутых планов скоростей для каждого положения. Рассмотрим пример построения для положения №5:

У кривошипа определяем скорость точки А

(2.2)

где, - длина звена,

- угловая скорость кривошипа,

Для построения вектора скорости точки А определяем масштабный коэффициент

(2.3)

где, - скорость точки А,

- вектор скорости точки А,

- полюс, выбираемый произвольно

Для определения скорости точки B запишем систему уравнений:

(2.4)

- из задания

Для определения скорости центра масс 2-го звена S2 воспользуемся соотношением:

(2.5)

где, , - расстояния между соответствующими точками на механизме, м

, - длинны векторов скоростей на плане, мм

мм

Соединив, точку и ? получим скорость центра масс второго звена.

Для определения скорости точки C запишем систему уравнениё:

(2.6)

- из задания

Для определения скорости центра масс 4-го звена S4 воспользуемся соотношением:

(2.7)

где, , - расстояния между соответствующими точками на механизме, м

, - длинны векторов скоростей на плане, мм

мм

Соединив, точку и ? получим скорость центра масс второго звена.

Определим значения угловых скоростей звеньев.

Направление определяем, перенеся вектор ab в точку S2 - второе звено вращается против часовой стрелки. Аналогично получим, что направлена по часовой стрелке.

Скорости точек остальных положений определяются аналогичным образом. Все значения сводим в таблицу(2.1).

Таблица 2.1 - Значения линейных и угловых скоростей

N

положения

VB=VS3,

VS2,

VС=VS5,

VS4,

VBA= VCA,

=,

1

0

5,58

0

5,58

8,37

33,48

2

5,36

6,66

3,01

6,14

7,34

29,37

3

8,46

8,14

6,04

7,39

4,36

17,42

4

8,37

8,37

8,37

8,37

0

0

5

6,04

7,39

8,46

8,14

4,36

17,42

6

3,01

6,14

5,36

6,66

7,34

29,37

7

0

5,58

0

5,58

8,37

33,48

8

3,01

6,14

5,36

6,66

7,34

29,37

9

6,04

7,39

8,46

8,14

4,36

17,42

10

8,37

8,37

8,37

8,37

0

0

11

8,46

8,14

6,04

7,39

4,36

17,42

12

5,36

6,66

3,01

6,14

7,34

29,37

2.2 Определение приведённого момента инерции звеньев

Приведённый момент инерции определяется по формуле:

(2.8)

где, - масса i-го звена рычажного механизма, кг

- линейная скорость центра масс i-го звена,

- угловая скорость i-го звена,

- приведённый момент инерции i-го звена по отношению к центру масс

(2.9)

- для звена, совершающего сложное движение

- для звена, совершающего вращательное или колебательное движения

- для звена, совершающего поступательное движение

Запишем формулу для нашего механизма:

(2.10)

Для 5-го положения приведём расчёт, а для остальных положений сведём значение в таблицу 2.2

кг•м2

кг•м2

кг•м2

Записав формулу (2.11) для положения №5 и подставив известные величины, получим:

Таблица 2.2 - Приведённые моменты инерции

N положения

, кг•м2

N положения

, кг•м2

1

0,0592

7

0,0592

2

0,0886

8

0,0886

3

0,1441

9

0,1441

4

0,1701

10

0,1701

5

0,1441

11

0,1441

6

0,0886

12

0,0886

Для построения графика приведённого момента инерции необходимо Рассчитать масштабные коэффициенты.

, (2.11)

где, - масштабный коэффициент по оси

- максимальное значение , кг•м2

- значение на графике, мм

, (2.12)

где, - масштабный коэффициент по оси ?

- принятая длинна одного оборота по оси ?

2.3 Определение приведённого момента сопротивления

Определим максимальную силу, которая действует на ползун В по следующей формуле:

(2.13)

где, - Максимальное индикаторное давление,

- диаметр поршня,

Определим расстояние от оси до графика по формуле (2.14)

На планах скоростей прикладываем все силы, действующие на механизм, и указываем их плечи. Составляем сумму моментов относительно полюса и решаем уравнение.

Для 1-го положения:

(2.14)

где, плечи соответствующих сил, снятые с плана скоростей, мм.

H,

, во всех положениях

H

Находим момент привидения:

(2.15)

где, - приведённая сила, Н

- длина соответствующего звена, м

Н•м

Для 2-го положения:

H

Н•м

Для 3-го положения:

H

Н•м

Для 4-го положения:

H

Н•м

Для 5-го положения:

H

Н•м

Для 6-го положения:

H

Н•м

Для 7-го положения:

H

Н•м

Для 8-го положения:

H

Н•м

Для 9-го положения:

H

Н•м

Для 10-го положения:

H

Н•м

Для 11-го положения:

H

Н•м

Для 12-го положения:

H

Н•м

Все значения сводим в таблицу.

Таблица 2.4 - Приведённые моменты сопротивления

N положения

,

N положения

,

1

8,88

7

8,88

2

650,08

8

634,72

3

180,7

9

171,81

4

681,01

10

681,01

5

1665,43

11

1674,32

6

1242,3

12

1257,69

Определяем масштабный коэффициент построения графика моментов сопротивления:

, (2.16)

где, - масштабный коэффициент по оси

- максимальное значение ,

- значение на графике, мм

По данным расчёта строится график .

Путём графического интегрирования графика приведённого момента строится график работ сил сопротивления .

График работ движущих сил получаем в виде прямой, соединяющей начало и конец графика работ сил сопротивления.

Масштабный коэффициент графика работ:

, (2.17)

где, Н - полюсное расстояние для графического интегрирования, мм

Н=60мм

Момент движущий является величиной постоянной и определяется графически.

Путём вычитания ординат графика из соответствующих ординат строится график изменения кинетической энергии .

(2.18)

По методу Ф. Витенбауэра на основании ранее построенных графиков и строим диаграмму энергия-масса .

Определяем углы и под которыми к диаграмме энергия-масса, проводятся касательные.

(2.19)

(2.20)

где, - коэффициент неравномерности вращения кривошипа.

Из чертежа определим

Определяем момент инерции маховика

, (2.21)

Маховик устанавливается на валу звена приведения.

Определим основные параметры маховика.

,кг (2,22)

где, - масса маховика, кг

- плотность материала, (материал-Сталь 45)

- ширина маховика, м

- диаметр маховика, м

,м (2,23)

где, - коэффициент (0,1?0,3),

м

м

кг

3. Силовой анализ рычажного механизма

3.1 Построение плана скоростей для расчётного положения

Расчётным положением является положение №11. Построение плана скоростей описано в разделе №2. Масштабный коэффициент плана скоростей

3.2 Определение ускорений

Определяем угловое ускорение звена 1.

, (3.1)

где, - момент от сил движущих,

- момент от сил сопротивления,

- приведённый момент инерции маховика,

- приведённый момент инерции рычажного механизма для расчётного положения,

- первая производная от приведённого момента инерции механизма для расчётного положения

, (3.2)

где, - масштабный коэффициент по оси ,

- масштабный коэффициент по оси ?,

- угол между касательной, проведённой к кривой графика в расчётном положении и осью ?.

Знак минуса говорит о том, что кривошип ОА замедляется. Направляем против направления и берём значение ускорения по модулю.

Строим план ускорений для расчётного положения.

Скорость точки А определяем по формуле

, (3.3)

где, - ускорение точки А,

- нормальное ускорение точки А относительно точки О,

- тангенциальное (касательное) ускорение точки А,

Ускорение найдём по формуле:

, (3.4)

где, - угловая скорость кривошипа,

- длина звена ОА, м

Ускорение найдём по формуле:

, (3.5)

Из произвольно выбранного полюса откладываем вектор длиной 100 мм. Найдём масштабный коэффициент плана скоростей.

, (3.6)

Определим длину вектора :

Ускорение точки А определим из следующеё формулы:

Определим ускорение точки B из следующей системы уравнений:

, (3.7)

Для определения нормальных ускорений точки В относительно точек А и С

Воспользуемся следующими формулами:

Определим длину векторов :

Ускорение направляющей равно нулю, т.к. она неподвижна.

Кореолисово ускорение точки В относительно направляющейрано нулю, т.к. точка В движется только поступательно относительно .

Ускорение точки В найдём, решив системе (3.7) векторным способом:

Из вершины вектора ускорения точки А () откладываем вектор (параллелен звену АВ и направлен от В к А), из вершины вектора

проводим прямую перпендикулярную звену АВ (линия действия ); из полюса проводим горизонтальную прямую (линия действия ); на пересечении линий действия векторов и получим точку b, соединив полученную точку с полюсом, получим вектор ускорения точки В.

Из плана ускорений определяем вектор ускорения точки В и вектор тангенциального ускорения :

Ускорение сочки С определяем аналогично ускорению точки B.

Определим длину векторов :

Из полученных тангенциальных ускорений найдём угловые ускорения 2-го и 3-го звеньев:

Определим ускорения центров масс звеньев:

Ускорение центра масс 2-го звена найдём из соотношения (3.10)

(3.8)

Из плана ускорений мм

мм

мм

Ускорение центра масс 4-го звена найдём из соотношения (3.11)

(3.9)

Из плана ускорений мм

мм

мм

Ускорения центров масс 3-го и 5-го звеньев равны ускорениям точек D и D' соответственно:

Значения всех ускорений сведём в таблицу:

Таблица 3.1 - Ускорения звеньев

Ускорение

точек механизма

Значение,

Ускорение

центров масс и угловые ускорения

значение, ,

---

---

---

---

Страницы: 1, 2