бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Механизмы имплантации в металлы и сплавы ионов азота с энергией 1-10 кэВ бесплатно рефераты

Ионы газа вытягиваются и ускоряются под действием приложенного между экстрактором 7 и анодом 6 высокого напряжения (10 - 50 кВ). Ионный поток 10 фокусируется, проходя через фокусирующий электрод 8, и попадает на поверхность образца 9.

При прохождении через отверстие в экстракторе ионы обладают энергией, достаточной для внедрения в поверхностные слои образца.

2.2 Механизмы взаимодействия имплантируемых ионов с мишенью

Из литературных источников [8, 21, 26, 36, 37, 48, 49], известно, что механические свойства обрабатываемой поверхности после имплантации ионов зависят, прежде всего, от концентрации внедренных ионов и образующихся в процессе имплантации радиационных дефектов. Для расчета пробегов и концентраций ионов при имплантации применяется теория Линхардта-Шарфа-Шиотта (ЛШШ), изложенная в работах [21, 22, 46 - 48]. Существенное влияние на распределение примеси по глубине поверхностного слоя изделия оказывает радиационно-стимулированная диффузия. На диффузионные процессы существенное влияние оказывает температура нагрева поверхностного слоя образца. Однако в случае ионов газов с энергией в диапазоне 1 - 10 кэВ ( Дж) нагрев будет незначительным для расчета окончательного распределения примеси можно пренебречь изменением температуры в зоне воздействия, а значит и её влиянием на диффузионные процессы. На концентрацию примеси (а значит и на остаточные концентрационные напряжения) влияет распыление поверхности образца при имплантации. Но для ионов газов низких энергий этот процесс можно не учитывать [3].

В настоящее время не существует теории, достаточно полно объясняющей модификацию поверхностных свойств материалов при ионной имплантации. При взаимодействии бомбардирующих ионов с твердым телом происходит ряд процессов, обуславливающих модификацию свойств материалов. Такими процессами являются внедрение ионов, которое сопровождается образованием радиационных дефектов и их последующая диффузия. Физические модели и методики расчетов характеристик указанных процессов приведены в работах [2, 3, 8, 13, 15, 21, 22, 28, 36, 48, 49]. Однако, в настоящее время не существует модели модификации поверхностного слоя реального материала, которая достаточно полно учитывала бы все вышеназванные механизмы, происходящие при ионной имплантации [3].

Рисунок 2.2 - Схема процессов, происходящих при ионной имплантации

За основу при описании модификации поверхностного слоя реального материала возьмем схему процессов, происходящих при ионной имплантации, приведенную на рисунке 2.2. Она наиболее полно учитывает процессы взаимодействия ионов с веществом (рисунок 2.2): внедрение ионов, которое сопровождается образованием радиационных дефектов, дефектообразованием, нагревом поверхности материала и их последующая диффузия. На схеме отражены входные и выходные характеристики данных процессов: полная доза имплантации Ф, распределение примеси по глубине Ci(z), температурное поле Q(z,t), распределение элементарных радиационных дефектов Cv(z), распределение примеси Ci(z,t) и дефектов Cv(z,t), обусловленное радиационно-стимулированной диффузией и поле остаточных концентрационных напряжений (z).

В разрабатываемой модели не отражен эффект дальнодействия (формирование развитой дислокационной структуры на глубинах, значительно превышающих глубину проникновения примеси при имплантации), обнаруженный рядом автором [2, 21, 44]. Несомненно, что этот эффект оказывает существенное влияние на свойства обработанного материала. Существующие гипотезы [21, 45, 53, 55] не позволяют количественно оценить этот эффект. Исследователи предполагают, что плотность образующейся в результате эффекта дальнодействия дислокационной структуры определяется как характеристиками ионного потока, так и элементным составом материала подложки [3].

Важной задачей является оценка свойств обработанного материала в зависимости от первоначальной концентрации примеси и образованных в процессе имплантации радиационных дефектов. Как показано в [3, 15, 49, 52, 54] остаточные концентрационные напряжения определяют свойства материала после имплантации.

Анализ существующей литературы показал, что для прогнозирования структуры и свойств поверхностного слоя образцов после имплантации при известных параметрах ионного потока (управляемых за счет изменения тока на катоде, ускоряющего напряжения между анодом и экстрактором (рисунок 2.1), давления газа в камере и др.), необходимо знание параметров:

дозы имплантации;

пробегов ионов при известном ускоряющем напряжении;

распределения примеси в материале после имплантации;

полей остаточных концентрационных напряжений.

Для их нахождения необходимо решить задачи выбора и усовершенствования методик расчета соответствующих параметров. В связи с этим целью дипломной работы является разработка комплекса моделей, позволяющих на основе данных о технологических параметрах имплантации составить прогноз о свойствах материала подложки после имплантации:

1. Модель для расчета пробегов ионов азота в металлах и сплавах под действием энергии имплантации;

2. Модель распределения ионов азота в поверхностном слое материала подложки после имплантации;

3. Модель распределения дефектов в поверхностном слое материала подложки после имплантации;

4. Модель расчета остаточных концентрационных напряжений в поверхностном слое материала подложки после имплантации.

2.3. Модель для расчета пробегов ионов в материале подложки

Для металлов и сплавов распределение пробегов по глубине оказывается приблизительно гауссовым [3]. Имеются трудности при теоретическом описании в случае больших интегральных доз облучения, когда на форму профиля примеси по глубине существенно сказывается распыление поверхности мишени, а также рассеяние ионов на атомах внедренной примеси [3].

Наиболее точные результаты расчета энергетических потерь получаются при использовании теории ЛШШ, в основе которой лежит утверждение о том, что основными механизмами торможения частиц в обрабатываемом веществе являются неупругие соударения с электронами (электронное торможение) и упругие соударения с ядрами (ядерное торможение).

В работе Линдхарда и др. [46, 47, 50, 51] получены уравнения, описывающие связь между энергией и пробегами ионов в аморфных мишенях. Многочисленные эксперименты демонстрируют достаточно хорошее согласие с теорией ЛШШ [1, 8, 11, 12, 22, 23, 56, 57].

Модель ЛШШ основана на следующих предположениях:

1) мишень считается аморфной, т. е. из рассмотрения исключаются случаи коррелированных последовательных столкновений;

2) в работе используется потенциал, рассчитанный на основе статистической модели атома Томаса--Ферми, с учётом только электростатического взаимодействия между электронами;

3) энергия, передаваемая атомам мишени в процессе столкновений, много меньше кинетической энергии иона;

4) основными механизмами торможения частиц в обрабатываемом веществе являются неупругие соударения с электронами (электронное торможение) и упругие соударения с ядрами (ядерное торможение). Оба механизма считаются независимыми в процессах торможения;

5) учитываются флуктуации энергии, обусловленные в процессе торможения только взаимодействием с ядрами;

6) при описании взаимодействия иона с атомами подложки используется классическое приближение бинарных столкновений.

Каждое из этих предположений ограничивает область применимости теории. В частности, предположение 1 исключает случай кристаллических и очень тонких аморфных мишеней. В этой модели не учитывается также оболочечное строение атомов. При близких атомных массах и порядковых номерах сталкивающихся атомов неупругие и упругие процессы становятся коррелированными, поскольку таким столкновениям соответствует значительная ионизация в обеих атомных подсистемах. Ионизация, в свою очередь, изменяет форму потенциала взаимодействия, а, следовательно, и угол рассеяния частиц. Такого рода корреляции могут существенно влиять на форму распределений ионов по пробегам (моменты кривой распределения высоких порядков).

Используемая в теории ЛШШ статистическая модель атома Томаса-Ферми, позволяет достигнуть наилучшего совпадения результатов расчетов с экспериментальными данными.

Рисунок 2.3 -- Схема пробега иона в твёрдом теле.

(1) - поток ионов; (2) - путь иона в материале; (3), (4), (5) - атомы в узлах кристаллической решётки материала подложки; (6) и (7) - начальное и конечное положение иона при внедрении в материал подложки.

Ионная имплантация (рисунок 2.3) охватывает два взаимосвязанных процесса: внедрение (легирование) и радиационную обработку (дефектообразование) [31]. При бомбардировке твердых тел тяжелыми заряженными частицами (массой более 1 а.е.м.) возникают эффекты, которые способствуют их торможению или рассеянию.

Эти эффекты классифицируют следующим образом [2, 21, 22]:

· Неупругие соударения со связанными электронами тормозящего вещества. Потеря энергии при таких соударениях обусловлена возбуждением атомов или молекул;

· Неупругие соударения с ядрами. Они вызывают тормозное излучение, возбуждение ядра или ядерные реакции;

· Упругие соударения со связанными электронами.

· Упругие соударения с ядрами или атомами. При этом часть кинетической энергии передается атомам мишени.

· Черенковское излучение. Оно возбуждается частицами, которые движутся в среде со скоростью, больше фазовой скорости света.

При ионной имплантации частицы движутся со скоростью меньше фазовой скорости света, поэтому черенковское излучение отсутствует. При торможении частиц неупругие соударения с ядрами и упругие столкновения с электронами не играют большой роли по сравнению с неупругими соударениями с электронами (электронное торможение) и упругими соударениями с ядрами (ядерное торможение). Поэтому в дальнейшем целесообразно рассматривать лишь эти два механизма. Какой из этих эффектов будет преобладать, зависит от энергии и массы ускоренных частиц и массы и порядкового номера атомов вещества. В диапазоне энергий, важных для ионной имплантации (от 1 кэВ ( Дж) до 1 МэВ ( Дж)), следует рассматривать обе составляющие [21, 31].

Для расчета торможения первичных ионов в веществе введено понятие сечения электронного и ядерного торможения Se,n [22, 31]:

, (2.1)

где -- число атомов в единице объема (? - плотность материала подложки, ; M2 - масса атома мишени, кг); -- потери кинетической энергии ионом на единицу длины пути в процессе столкновений с атомами или электронами мишени, Дж.

Полный пробег частицы определяется из соотношения [21]:

, (2.2)

где R средняя общая длина пути иона в материале подложки, м, при его начальной энергии Е0, Дж.

Наибольший практический интерес представляет проекция пробега иона на направление имплантации Rp, которая определяет наиболее вероятную ее глубину [3]:

, (2.3)

где M1 -- масса имплантируемого иона, кг.

Эта формула справедлива в довольно широком интервале масс ион-атом, поэтому именно её и следует использовать при расчётах. Формула (2.3) позволяет рассчитать средний проецированный пробег для одноатомных мишеней [22]. Для расчёта пробега в мишенях сложного химического состава, каковыми являются сплавы, можно воспользоваться статистическими методами имитационного моделирования, в частности, методом Монте-Карло [20].

В разделах 2.3.1 и 2.3.2 приведены расчётные формулы для ядерных и электронных потерь энергии ионом в веществе [22, 57]. Величина вклада ядерных и электронных потерь энергии в общие потери энергии ионом различна для разных энергетических диапазонов (рисунок 2.4).

Из анализа графика на рисунке 2.4 следует, что при низких энергиях ионов () их торможение за счёт ядерных потерь энергии является доминирующим. С ростом энергии имплантируемых ионов упругие потери энергии достигают максимума в точке E1 и затем начинают уменьшаться. В то же время неупругие потери энергии продолжают увеличиваться. Таким образом, в области средних энергий ионов () в точке E2 электронные и ядерные тормозные сечения становятся сравнимы по величине. При дальнейшем увеличении энергии ионов неупругие потери энергии ионов существенно возрастают и упругие потери можно не учитывать. В высокоэнергетической области (энергия ионов 10-13 Дж и выше) при энергиях ионов выше точки E3 заключён диапазон энергий, в котором применима квантовая теория торможения быстрых ионов Бете-Блоха [22]. Уменьшение потерь энергии после точки E3 связано с тем, что они переходят в ионизационные потери. Подъём кривой при очень высоких энергиях обусловлен релятивистской поправкой [22].

Рисунок 2.4 - Общий вид зависимости тормозных сечений электронного и ядерного торможения от энергии иона.

Потери энергии определяются в основном электронным торможением, если энергия налетающих частиц превышает Eкр:

, (2.4)

где [57], Z1 и Z2 - зарядовые числа иона и атома мишени соответственно.

Таким образом, из анализа графика на рисунке 2.4 и из условия (2.4) следует, что в диапазоне энергий 1 - 10 кэВ ( Дж), при необходимо учитывать как электронные, так и ядерные потери энергии ионами азота при имплантации в металлы и сплавы, а при можно учитывать только электронные потери энергии ионом. Рассмотрим далее зависимости для расчёта этих потерь.

2.3.1 Ядерное торможение иона в материале

Если проинтегрировать энергию, передаваемую ионом атому мишени при столкновении Tn по всем возможным потерям энергии при столкновении, то получим упругие потери энергии на единицу длины пути [1, 2, 12, 21, 22, 57]:

, (2.5)

где Tmax -- максимально возможная энергия, передаваемая при лобовом столкновении, Дж; d? -- дифференциальное поперечное сечение взаимодействия, м2.

Таким образом, для нахождения потерь энергии ионом при столкновении с атомами поверхностного слоя материала образца, необходимо знать энергию Tn, Tmax и сечение рассеяния d?.

Для нахождения вышеуказанных параметров рассмотрим процесс столкновений частиц на основе классической механики. Тогда с углом рассеяния сталкивающихся частиц можно связать прицельный параметр p и классическую траекторию в процессе столкновения. Уравнения, описывающие траектории взаимодействующих частиц, значительно упрощаются, если рассматривать движение в системе центра масс (СЦМ). Рисунок 2.5 иллюстрирует положение и угловые координаты частиц при максимальном их сближении в лабораторной системе координат (ЛСК). Одна из частиц (M1) до столкновения двигалась со скоростью v, а другая (M2) - покоилась. Углы отклонения частиц после столкновения в ЛСК 1 и 2 выражаются через угол формулами [22]:

, , (2.6)

где ? - угол отклонения иона в СЦМ при столкновении, рад.

Абсолютные величины скоростей частиц после столкновения и могут быть выражены через угол ? формулами [22]:

, . (2.7)

Рисунок 2.5 - Схема столкновения двух частиц в ЛСК.

- скорость иона до и после столкновения соответственно; - скорость атома после столкновения; - скорость центра масс; ?1, ?2 - углы отклонения в ЛСК после столкновения иона и атома соответственно; ? - угол отклонения иона в СЦМ; p - прицельный параметр; rmin - минимальное расстояние сближения частиц.

Тогда упругие потери энергии Tn ионом при столкновении с атомом подложки в ЛСК рассчитываются согласно (2.7) по формуле:

, (2.8)

где E - энергия иона до столкновения; параметр Дж, определяет максимально возможную энергию, передаваемую при лобовом столкновении (когда частицы сближаются и удаляются по одной оси):

. (2.9)

Угол рассеяния ? налетающей заряженной частицы в центральном силовом поле c потенциальной энергией U(r) наиболее удобно решать исходя из законов сохранения энергии и момента импульса :

, (2.10)

. (2.11)

где r - радиус-вектор иона, м; p прицельный параметр, м (расстояние, на котором ион прошёл бы от атома в отсутствие силового поля); приведенная масса, кг; и радиальная и поперечная составляющие скорости иона соответственно.

Подставим величину из (2.11) в (2.10):

. (2.12)

Отсюда

. (2.13)

Преобразуем выражение (2.11) к виду:

, (2.14)

тогда из (2.13) и (2.14) получим

, (2.15)

и, следовательно,

. (2.16)

Рисунок 2.6 - Траектория частицы в СЦМ.

Страницы: 1, 2, 3, 4, 5, 6