бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Механизм поперечно-строгального станка бесплатно рефераты

Механизм поперечно-строгального станка

Изм

Лист

№ докум.

Подп.

Дата

Лист

0601С.23.02.000 РР

Кафедра «Основы проектирования машин»

Тема

Механизм поперечно-строгального станка

Содержание

1 СИНТЕЗ РЫЧАЖНОГО МЕХАНИЗМА

1.1 Структурный анализ механизма

1.2 Определение недостающих размеров

1.3 Определение скоростей точек механизма

1.4Определение ускорений точек механизма

1.5 Диаграмма движения выходного звена

1.6 Определение угловых скоростей и ускорений

1.7 Определение ускорений центров масс звеньев механизма

1.8 Аналитический метод расчёта

2 СИЛОВОЙ АНАЛИЗ РЫЧАЖНОГО МЕХАНИЗМА

2.1 Определение сил инерции

2.2 Расчёт диады 4-5

2.3 Расчёт диады 2-3

2.4 Расчет кривошипа

2.5 Определение уравновешенной силы методом Жуковского

2.6 Определение мощностей

2.7 Определение кинетической энергии и приведённого момента инерции механизма

3 ГЕОМЕТРИЧЕСКИЙ РАСЧЁТ ЗУБЧАТОЙ ПЕРЕДАЧИ, ПРОЕКТИРОВАНИЕ ПЛАНЕТАРНОГО МЕХАНИЗМА

3.1 Геометрический расчёт зубчатой передачи

3.2 Определение передаточного отношения планетарной ступени и подбор чисел зубьев колёс

3.3 Определение частот вращения зубчатых колёс аналитическим методом

4 СИНТЕЗ И АНАЛИЗ КУЛАЧКОВОГО МЕХАНИЗМА

4.1 Построение кинематических диаграмм и определение масштабных коэффициентов

4.2 Построение профиля кулачка

4.3 Определение максимальной линейной скорости и ускорения толкателя

5 СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

Введение

Поперечно-строгальный станок предназначен для строгания плоских поверхностей.

Привод станка состоит из простой зубчатой передачи и планетарной передачи, который соединен с электромотором.

Резание металла осуществляется резцом, установленным в резцовой головке, закреплённой на ползунке, при рабочем ходе ползунка.

Кривошип жёстко соединен с зубчатым колесом. Во время перебега в конце холостого хода осуществляется перемещение стола с заготовкой на величину подачи с помощью храпового механизма и кулачкового механизма, кулачёк которого жестко соединен с зубчатым колесом.

При проектировании профиля кулачка необходимо обеспечить заданный закон движения толкателя.

1 Синтез и анализ рычажного механизма

Исходные данные: lo1o2=460мм ; H=460мм ; nкр=70 мин-1 ; К=1,5;

1.1. Структурный анализ механизма :

Степень подвижности механизма:

;

где к=5 - число подвижных звеньев,

p1=7 - число одноподвижных кинематических пар,

p2=0 - число двухподвижных кинематических пар.

Разложение механизма на структурные группы Асура

Формула строения механизма:

I(0;1)> II2(2;3)>II2(4;5)

Механизм II класса , второго порядка.

1.2. Определение недостающих размеров:

Угол размаха кулисы:

Длина кривошипа:

Длина кулисы:

Масштабный коэффициент построения схемы :

Строим 12 планов механизма , приняв за начало отсчета крайнее положение, соответствующее началу рабочего хода механизма.

1.3 Определение скоростей точек механизма.

Скорость точки А кривошипа определяем по формуле :

,

где , где nкр=70мин-1

Планы скоростей строим в масштабе :

Скорость точки А' находим графически , решая совместно систему :

На плане Рvа'=30мм . Абсолютная величина скорости точки А' :

Скорость точки В находим из соотношения :

, откуда

Абсолютная величина скорости точки В :

Скорость точки С определим, решая совместно систему :

На плане Рvс=34мм. Абсолютная величина скорости точки С :

, на плане =14мм

Для всех остальных положений скорости определяем аналогично.

Полученные результаты сводим в таблицу 1.1

Таблица 1.1.- Значения скоростей

Скоростим/с

Положения механизма

1

2

3

4

5

6

7

8

9

10

11

12

va

1.03

1,03

1,03

1,03

1,03

1,03

1,03

1,03

1,03

1,03

1,03

1,03

va'

0,6

1,02

1,2

1,26

1,1

0,7

0.16

0,56

1.1

1,24

0,64

1,32

vb

0,88

1,32

1,5

1,6

1,43

0,92

0,26

1,18

2,5

2,8

1,3

0

vc

0,68

1,24

1,5

1,6

1,48

0,92

0,32

1,4

2,54

2,8

1

0

1.4 Определение ускорений точек механизма.

Пересчетный коэффициент С :

Ускорение точки А конца кривошипа определяем по формуле:

Ускорение аа направлено по кривошипу к центру вращения О1.

Выбираем масштабный коэффициент ускорений:

На плане ускорений изображаем ускорение точки А отрезком Раа=55мм

Ускорение точки А' определяем, решая совместно систему:

Кориолисово ускорение:

;

По свойству подобия определяем ускорение точки В :

;

Система уравнений для определения ускорений точки С:

, откуда

Ускорения всех точек найдены. Ускорения для остальных положений механизма находим аналогично . Значения ускорений сводим в таблицу

Таблица 1.2. - Значения ускорений

Ускорения м/с2

Положения механизма

1

3

5

7

9

11

12

аа

7,5

7,5

7,5

7,5

7,5

7,5

7,5

аА'

3,8

2,5

2,6

6,4

8,5

10,3

7,5

ab

5,7

3,4

3,8

10,5

19,3

21,4

11

ac

5,8

2,1

1,7

10,5

16,1

20,8

11,7

1.5 Диаграммы движения выходного звена.

Диаграмму перемещения строим , используя полученную из S-t плана механизма траекторию движения точки С.

Диаграммы скорости V-t и ускорений A-t строим из полученных 12 планов скоростей и 7 планов ускорений.

Масштабные коэффициенты диаграмм:

,

где хt=180 мм

1.6 Определение угловых скоростей и ускорений

Угловые скорости и ускорения звеньев механизма определяются для первого положения

1.7. Определение ускорений центров масс звеньев механизма

Ускорение центров масс звеньев определяем из планов ускорений:

1.8 Аналитический метод расчета

1. Расчет ведется для первого положения кулисы:

2. В проекциях на координатные оси:

3. Поделим второе уравнение на первое:

4. Передаточное отношение U31:

5. Передаточная функция ускорений U'31:

6. Угловая скорость кулисы:

7. Угловое ускорение кулисы:

8. Уравнение замкнутости верхнего контура в проекциях на оси:

(1)

9. Решая совместно два уравнения находим sin?4:

10 . Дифференцируем уравнения (1) по параметру ?1:

(2)

где и - соответствующие передаточные отношения.

11. Передаточное отношение U43 и угловая скорость ?4:

12. Передаточное отношение U53:

13. Дифференцируем уравнение по параметру ?3:

(3)

где и

14. Из второго уравнения системы (3) определяем U'43:

15. Из первого уравнения системы (3) находим U'53:

16. Скорость и ускорение точки С выходного звена:

1.9 Расчет на ЭВМ

Program kulise1;

User crt;

Const

h=0.;

l0=0.456;

l1=0.143;

shag=30;

w1=7.33;

a=0.270;

var

f1, w3, e3, vb, ab, u53, u53_, u31_:real;

cosf3, tgf3, sinf3: real;

begin

write (`,Введите угол в градусах`);

read(f1);

repeat

w3:=w1*((sqr(l1)+l0*l1*sin(f1))/(sqr(l1)+sqr(l0)+2*l0*l1-*sin(f1)));

u31_;=l0*l1*cos(n)*(sqr(l0)-sqr(l1))/(sqr(sqr(l1)+sqr(l0)+2*l0*l1*sin(f1)));

E3:=sqr(w1)*u31_;

cosf3:=sqrt((sqr(l1)*sqr(cos(f1)))/(sqr(l1)+sqr(l0)+2*l0*l1*sin(f1)));

tgf3:=(l0+l1*sin(f1))/(l1*cos(f1));

sinf3:=tgf3/sqrt(1+sqr(tgf3));

u53:=-(a/(sqr(sinf3)));

u53_:=(2*a*cosf3)/(sqr(sinf3)*sinf3);

Ab:=sqr(w3)*u53_+E3*u53;

Writeln(`'Скорость Vb=`, Vb=`,Vb:3:4);

Writeln(`'Ускорение Ab=`, Ab=`,Vb:3:4);

Decay(10000)

Writein;

F1:=F1+Shag;

Until F1>=

End.

Положения

Скорости

Ускорения

0

0

76,6

1

35,963

49,8936

2

63,5161

30,9

3

80,1509

18,5649

4

86,5

0

5

85,3494

-7,3299

6

77,2378

-14,32

7

56,7787

-63,818

8

0

200,7

9

-132,198

-273,396

10

-260

0

11

-94,5398

272,2544

Планы скоростей и ускорений:

Рис. 3 - Диаграмма скоростей

Рис. 4 - Диаграмма ускорений

2 Силовой анализ механизма

Исходные данные:

вес кулисы кг;

вес шатуна кг;

вес ползуна кг.

2.1 Силы тяжести и силы инерции

Силы тяжести:

Н

Н

Н

Силы инерции:

Н

Н

Н

Н м

мм

2.2 Расчет диады 4-5

Для расчета этой диады изобразим ее со всеми приложенными к ней силами: силами тяжести, полезного сопротивления и реакциями.

Эти реакции в поступательных парах известны по направлению, но неизвестны по модулю. Определяем с помощью плана сил. Составим уравнение равновесия диады 4-5.

Строим план сил диады в масштабе сил

Уравнение содержит три неизвестных, поэтому составляем дополнительное уравнение равновесия в форме моментов сил относительно точки С.

Рассчитаем вектора сил

Строим план сил по уравнению сил, в том порядке как силы стояли в уравнении.

Значения сил из плана сил

Для рассмотрения внутренних реакций в диаде 4-5 необходимо рассмотреть равновесие одного звена, звена 4.

2.3 Расчет диады 2-3

Изобразим диаду со всеми приложенными к ней силами. В точках А и О2 взамен отброшенных связей прикладываем реакции и . В точке В прикладываем ранее найденную реакцию. Составляем уравнение равновесия диады 2-3.

Страницы: 1, 2