бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Металлы и их сплавы бесплатно рефераты

Металлы и их сплавы

Контрольная работа №1

по металловедению

Тема: Металлы и их сплавы

Вариант№14

Вопросы

1.Изложите сущность пластической деформации металлов и влияние на неё химического состава, структуры, температуры нагрева, скорости и степени деформации

2.Вычертите диаграмму состояния железо-карбид железа. Укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения в интервале температур от 1600 до 0 °С для сплава, содержащего 3,7 % С

3.Дайте определение легированным сталям. Опишите влияние легирующих элементов хрома, никеля, кремния, марганца, титана на свойства легированных сталей. Укажите, что называется нержавеющей сталью. Какой элемент и в каком количестве необходимо ввести в сталь, чтобы она стала корозионностойкой

4. Приведите описание литейных сплавов на основе алюминия: их маркировку, состав, литейные и физико-механические свойства, область применения. Рассмотрите особенности изготовления и термической обработки отливок из алюминиевых сплавов

5. Для изготовления деталей выбран сплав АМг3. Укажите состав сплава. Опишите каким способом производится упрочение этого сплава и объясните природу упрочения. Укажите характеристики механических свойств сплава

1.Изложите сущность пластической деформации металлов и влияние на неё химического состава, структуры, температуры нагрева, скорости и степени деформации

ДЕФОРМАЦИЯ (от лат . deformatio - искажение)- изменение взаимного расположения точек твердого тела, при котором меняется расстояние между ними, в результате внешних воздействий или различных физико-механических процессов, возникающих в самом теле (например, изменение объёма кристаллов при изменении температуры). Деформация называется упругой, если она исчезает после удаления воздействия, и пластической, если она полностью не исчезает. Наиболее простые виды деформации - растяжение, сжатие, изгиб, кручение.

С понятием деформации связаны два механических свойства металла :

- Прочность- сопротивление металла (сплава) деформации и разрушению.

- Пластичность- способность металла к остаточной деформации (остающейся после удаления деформирующих сил) без разрушения.

При упругой деформации происходит незначительное и полностью устранимое смещение атомов или поворот блоков кристалла. Происходит незначительное изменение межатомных расстояний в кристаллической решётке, что схематически изображено на рисунке 1.б. Если под действием внешних нагрузок нормальные напряжения у превысят допустимые для данного материала значения, искажения решётки станут необратимыми и произойдёт хрупкое разрушение за счёт разрыва межатомных связей (рис1.в).

Возникающие при деформации напряжения у зависят от приложенной силы P к некоторой площадке F.

у = P / F кгс/ммІ

Образование внутренних напряжений связано с неоднородным распределением деформации по объёму тела.

Пластическими называют деформации, при которых происходит необратимое смещение атомов в кристаллической решётке под действием предельных значений касательных напряжений ф. Необратимое смещение атомов в решётке происходит за счёт сдвига части атомов при их скольжении по плоскостям сдвига в направлениях наиболее плотной упаковки. Сдвигу атомов по плоскостям скольжения явно способствуют искажения решётки, вызванные дислокациями. Дислокации под действием касательных напряжений легко перемещаются в направлении действия сил, облегчая тем самым пластическое (остаточное) деформирование. При пластическом (остаточном) деформировании после снятия внешней нагрузки в деформируемом теле наблюдается остаточное изменение формы и размеров при сохранении сплошности тела. При дальнейшем развитии пластического деформирования может произойти пластичное (вязкое) разрушение путём сдвига. (рис2.б)

Как было сказано ранее, сдвиг в кристаллической решётке сопровождается скольжением одной части решётки относительно другой в направлении наиболее плотной упаковки атомов. Эти плоскости называются плоскостями скольжения или сдвига и зависят от типа кристаллической решётки. Чем больше элементов сдвига в решётке, тем выше пластичность металла. Заштрихованные плоскости на рис.3 являются плоскостями скольжения. По этим плоскостям смещаются атомы вещества при пластическом деформировании кристалла.

Реальные металлы состоят из большого числа кристаллов и имеют большое число дефектов, которые получаются при кристаллизации из расплава. К линейным дефектам относятся дислокации. Дефекты в металлах снижают его прочность, но например, бездефектное железо невозможно подвергнуть пластическому деформированию, а следовательно затруднена его обработка в холодном состоянии.

На рис.4 а) и б) изображены краевая и винтовая дислокации. В первом случае дислокация представляет собой границу неполной атомной плоскости, во втором дислокация- сдвиг одной части кристалла относительно другой. На рис.4 в) изображены двойники, которые относятся к поверхностным дефектам и представляют собой симметрично переориентированные области кристаллической решётки, которые находятся в зеркальном отражении друг к другу.

Итак: Пластическая деформация в кристаллах может осуществляться скольжением и двойникованием. Скольжение- это смещение частей кристалла друг относительно друга и зависит от вида кристаллической решётки. Чем больше направлений в кристалле вдоль которых происходит скольжение, тем пластичнее металл.

Процесс скольжения не нужно представлять, как одновременное передвижение одной части кристалла относительно другой. Скольжение осуществляется в результате перемещения в кристалле дислокаций т.е перемещение атомов. Дислокации могут двигаться по плоскости скольжения в кристаллической решетке при очень малых напряжениях сдвига. Подтверждением этого служат небольшие напряжения при которых происходит пластическая деформация у монокристаллов чистых металлов. При больших деформациях движение дислокаций вызывает появление или размножение большого количества новых дислокаций в процессе пластической деформации.

Двойникование. Пластическая деформация некоторых металлов, имеющих плотноупакованные решётки, помимо скольжения, может осуществляться двойникованием, которое сводится к переориентировке части кристалла в положение, симметричное по отношению к первой части относительно плоскости, называемой плоскостью двойникования. Двойникование подобно скольжению сопровождается прохождением дислокаций сквозь кристалл.

Пластичность металла очень важное свойство, кот учитывается и при проектировании деталей механизмов и в машине, что особенно важно при изготовлении этих деталей давлением, резанием и т.д. По показаниям пластичности можно дать частичную оценку свойств различных металлов, а также произвести контроль качества их изготовления.

Свойства металлов, влияющих на прочность металла, определяют с помощью испытаний. К статическим относятся испытания на растяжение, сжатие, кручение, изгиб. На рисунке 5 построены две характеристики прочности металлов, подвергнутых растяжению. Верхний график показывает, что хрупкие материалы разрушаются под воздействием силы Р при незначительном удлинении Дl. Тогда как пластичные материалы имеют короткий прямолинейный участок упругой деформации и далее способны растягиваться под действием силы. Разрушаются намного позже.

Для пластичных металлов предел прочности ув. характеризует сопротивление металла значительным пластическим деформациям.

На пластичность материала влияют различные факторы:

1)Чем больше в металле возможных плоскостей и направлений скольжения, тем выше его способность к пластической деформации. Металлы, имеющие кубическую кристаллическую решётку (например, алюминий, медь) обладают высокой пластичностью, так как скольжение в них происходит во многих направлениях. Металлы с гексагональной плотноупакованной структурой(цинк, магний) менее пластичны и поэтому труднее, чем металлы с кубической структурой, поддаются прокатке, штамповке и другим способам деформации.

2)С увеличением плотности дислокаций происходит взаимодействие между ними, что тормозит их перемещение и уменьшает пластичность. В металле, упрочённом деформацией, при нагреве обычно повышается пластичность (напр., у меди, никеля).

3)Перспективными являются волокнистые (композиционные материалы). Высокая прочность и пластичность в них достигается путём армирования мягкой металлической матрицы (медь, алюминий, серебро и т.д.) бездефектными нитевидными кристаллами или волокнами неметаллов (напр., углеродные волокна)

4)Деформация бывает горячая- при температуре выше температуры рекристаллизации. Её в зависимости от состава сплава обычно проводят при Т=0,7-0,75 Т пл. При такой темп снижается сопротивление металла пластической деформации и повышается пластичность.

5)Снижение температуры повышает сопротивление пластической деформации уменьшается пластичность. Поэтому металлы, вязкие при сравнительно высоких температурах, могут при низких температурах разрушаться хрупко.

6)На пластичность влияют различные соединения и примеси. В стали, например, количество цементита прямо пропорционально содержанию углерода и чем его больше, тем больше сопротивление деформации и уменьшение пластичности. Марганец повышает прочность и практически не влияет на пластичность. Сера снижает пластичность( особенно в поперечном направлении вытяжки при прокате и ковке) Фосфор сильно уменьшает пластичность. 7) Скорость и степень деформации зависят от приложенной силы. у = P / F кгс/ммІ

2.Вычертите диаграмму состояния железо-карбид железа. Укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения в интервале температур от 1600 до 0 °С для сплава, содержащего 3,7 % С

Диаграмма состояния сплава представляет собой графическое изображение состояния сплава при изменении его состава, температуры, давления, концентрации элементов. Она показывает устойчивые состояния сплава, при которых компоненты и фазы обладают минимумом свободной энергии. Эти фазы называются равновесными фазами, вследствие чего и диаграммы называют диаграммами равновесия, то есть равновесные состояния- это устойчивые состояния вещества, обладающие минимумом свободной энергии.

Обычно для построения диаграммы состояния пользуются результатами термического анализа, те строят кривые охлаждения сплава.

Сплав нагревают выше температуры плавления и выше, затем охлаждают до 0. В процессе охлаждения с определёнными промежутками времени фиксируется температура сплава , изменяющаяся вместе с агрегатным состоянием. По полученным данным строим кривую охлаждения в координатах время-температура. Если взять сплавы с различным %-ым содержанием, то диаграмма состояния может быть построена в осях концентрация(х), температура(у)

Диаграмма состояния сплава при его кристаллизации показ изменение его состояния в зависимости от температуры и концентрации при постоянном давлении внешней среды.

Ликвидус (по латыни ликва-жидкий)- линия на графике, кот показывает температуру начала кристаллизации сплава.

Солидус ( солид-твёрдый)--точки графика, определяющие температуру конца кристаллизации.

Рассматривая охлаждение металла, отметим, что железо известно в таких модификациях, отличающихся видом кристаллической решётки:

1539°С- температура плавления чистого железа.

- При температуре ниже 1539 до 1392°С- б-железо, которое часто обозначают как д-железо

1392°С-критическая точка превращения д - г -железо (г -железо-решётка гранецентрированный кубическая ГЦК)

- Ниже 1392 до 910°С устойчивым является г -железо

910°С-критическая точка превращения г - б -железо

- При температуре ниже 910°С- б-железо

Эти данные для удобства запишем в таблицу №1

Таблица1.

1539°С

Температура плавления железа

1539-1392°С

б-железо, часто обозначают как д-железо

1392°С

критическая точка превращения д - г-железо

1392-910°С

устойчивым является г -железо

910°С

критическая точка превращения г - б -железо

ниже 910°С

б-железо

В системе Fe-C в процессе охлаждения и кристаллизации различают следующие фазы:

- Жидкая фаза- однородный жидкий расплав

- Твёрдые фазы:

А)феррит- твёрдый раствор углерода и других примесей в б-железе. ( б-железо - до 910°С и выше 1392 (д) ) Низкотемпературный б-феррит имеет растворимость углерода до 0,02% (предельная растворимость 0,02% при температуре727°С) и высокотемпературный д-феррит с предельной растворимостью углерода 0,1% при 1499°С

Б) аустенит- твёрдый раствор углерода и других примесей в г -железе (г -железо от 910 до 1392 °С) При 1147°С аустенит содержит 2,14% С, при 727°С- около 0,8%

В) Цементит- химическое соединение железа с углеродом- карбид железа Fe3C. В цементите содержится 6,67% углерода по его массе. Температура плавления цементита около 1550°С?1600°С.Цементит первичный Ц1 выделяется из жидкого металлического расплава, цементит вторичный Ц2- из аустенита, цементит третичный Ц3- из феррита.

Б)+В)=Ледебурит-механическая смесь(эвтектика)- аустенита и Ц1

Формируется при температуре 1147°С из жидкого металлического расплава, содержащего более 2,14%С .

При понижении температуры до 727°С формируется окончательная структура ледебурита, состоящая из механической смеси (Ф+Ц2)+Ц1. Перлит- механическая смесь Ф+Ц2 .

1.Для построения диаграммы состояния Fe-Fe3C используем координатную плоскость и оси:

- ось Х, вдоль которой будем откладывать одновременно 2 параметра: состав сплава по содержанию углерода в % и по содержанию цементита в %

- ось Y, вдоль которой будем откладывать температуру охлаждения сплава от 1600 до 600 °С

Наносим метки:

-по верхней оси Х- равномерно с шагом1 от 0% до 7%- процентное содержание углерода.

-по оси Y- равномерно с шагом 100от 600 от 600°С до 1600°С

X

0

0

0

0

0,1

0,16

0,51

0,8

2,14

4,3

6,67

Y

1539

1392

911

727

1499

1499

1499

727

1147

1147

1600

точка

А

N

G

Р

Н

J

В

S

Е

С

D

3. Строим диаграмму состояния.

Страницы: 1, 2