бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Металлургические печи бесплатно рефераты

Во время загрузки твердых материалов в печь расходуется максимальное количество топлива для обеспечения быстрого прогрева и расплавления шихтовых материалов. Жидкий чугун загружают в печь через окно с помощью вставляемого в него стального желоба, футерованного изнутри огнеупором. Жидкий чугун подают к печи в чугуновозном ковше с помощью мостового крана. Чугун заливают в печь, когда твердая шихта прогрета и начинает оплавляться. С заливкой жидкого чугуна резко ускоряется плавление металлической части шихты. Одновременно с прогревом шихты начинается окисление примесей. К моменту расплавления шихты почти полностью окисляется кремний, более половины марганца, третья часть фосфора и частично углерод. Во время плавления образуется значительное количество закиси железа, так как количество воздуха, подаваемого в мартеновскую печь, обычно значительно больше необходимого для сжигания топлива (125% теоретически необходимого) и пламя в мартеновской печи бывает окислительным.

Процесс доводки металла до нужного химического состава производится в так называемый период чистого кипения металла, начинающегося после прекращения добавок в него железной руды. Чистое кипение ванны протекает не менее одного часа. Готовность заданной плавки стали определяют взятием пробы и экспресс-анализом в цеховой лаборатории.

После этого проводится раскисление и выпуск стали в ковши, из которых ее разливают в слитки. Общая продолжительность получения стали в мартеновской печи занимает несколько часов. Раскисление стали в ванне мартеновской печи проводят сначала доменным ферромарганцем, а затем доменным ферросилицием. Кремний ферросилиция отнимает кислород от закиси железа и образует сложные силикаты железа и марганца, которые обладают низкой температу-рой плавления и малой плотностью. Они всплывают в ванне и переходят в шлак. После этого сталь начинают выпускать из печи и завершают раскисление в ковше (или на желобе, по которому она вытекает в ковш), богатым ферросилицием, и вводят небольшое количество более сильного восстановителя - обычно алюминия или силикоалюминия

Алюминий является активным раскислителем стали, но образующаяся окись алюминия тугоплавка и в виде тонкой взвеси почти вся остается в стали. Принято считать, что эти частички окиси алюминия являются центрами кристаллизации при формировании слитка, и с увеличением количества алюминия, вводимого для раскисления, можно получить более мелкую структуру слитка или отливки. Обычно для раскисления берут 100-400 г алюминия на 1 т выплавляемой стали в зависимости от ее марки.

Скрап-процесс в основной печи отличается от скрап-рудного процесса, особенно в период завалки и расплавления шихты; заключительная часть процесса отличается меньше.

Совсем иначе протекает кислый мартеновский процесс. В связи с тем, что футеровка кислых мартеновских печей выполнена из динаса, наварка пода и откосов проводится кварцевым песком, т. е. кислым материалом. Шлак в этой печи кислый и не содержит свободной извести. Следовательно, удаления серы и фосфора в этой печи не происходит. Поэтому шихтовые материалы и топливо должны содержать эти примеси в минимальном количестве.

Хотя окислительное действие газов в кислых печах сохраняется и в начальный период плавки в шлаке образуется 20-35% закиси железа, окислительное действие его слабее. Окисление углерода происходит значительно медленнее, чем в основном процессе. Руду подают в печь во время окислительного периода небольшими порциями постепенно. Кроме закиси железа, шлаки содержат много SiO2, достигающего к концу процесса 60% за счет перехода части кремнезема из набойки. Этот кремнезем и связывает закись железа в файалит, чем и объясняется медленное окислительное действие шлака в кислом процессе. В результате могут создаться условия для восстановления некоторого количества кремния в период кипения ванны. В горячо работающих кислых печах сталь раскисляется лучше и при малом расходе раскислителей, а в ряде случаев и без них. Поэтому сталь, выплавленная в кислых печах, содержит меньше растворенных газов, неметаллических включений и отличается высокими механическими свойствами.

Кислым процессом производят и легированные высококачественные стали, так как окисление (угар) дорогих легирующих элементов в них значительно меньше. Но и производство кислой мартеновской стали обходится в 1,5-2 раза дороже, чем стали, полученной в основной печи.

Мартеновские печи разной мощности принято сравнивать по суточной производительности, отнесенной к площади пода печи, т. е. суточному съему стали с 1 м2 условной площади пода. Наши мартеновские печи непрерывно улучшают этот показатель. Так, в 1932 г. он равнялся 2,68 т, в настоящее время - более 8 т и нередко достигает 11-12 т, а с применением кислорода он еще выше.

Общая продолжительность плавки стали 220-260 т в печах обычно составляет 7-10 ч при расходе условного топлива 130-350 кг на 1 т стали. Таким образом, основными недостатками мартеновского процесса следует считать большую продолжительность процесса и значительный расход топлива. Именно поэтому направление рационализаторских предложений производственных коллективов и исследований ученых - металлургов направлены на устранение этих недостатков и повышение качества получаемого металла.

Важнейшим фактором, совершенствующим и ускоряющим мартеновский процесс, является применение кислорода. В мартеновском процессе наметились два реальных и экономически целесообразных пути применения кислорода. Первый путь - это обогащение воздушного дутья кислородом до 25-35%. В результате интенсификации горения и повышения окислительной способности печи сокращается общая продолжительность плавки, снижается расход топлива, увеличивается производительность. Так, например, при обогащении дутья печи в 100 т кислородом до 29-30% расход кислорода составляет 55-70 м3 на 1 т стали, производительность печи увеличивается в 2,5 раза при сокращении продолжительности плавки с 9 ч до 3 ч 30 мин; расход топлива при этом снижается с 150 кг/т стали до 92 кг/т. Такое обогащение дутья кислородом и форсирование плавки возможно при наличии свода печи, сделанного из высокотермостойких огнеупоров.

Второй путь - это применение кислорода для интенсификации окисления примесей путем кратковременного введения в печь кислорода. Наиболее перспективным в этом направлении является введение кислорода водоохлаждаемыми фурмами через свод печи (до аналогии с кислородно-конверторным производством). Введение кислорода таким образом резко сокращает продолжительность окисления примесей в ванне печи, но сильно увеличивает (в 5-8 раз) содержание пыли в печных газах, за счет разбрызгивания шлака и испарения металла.

На ряде заводов успешно комбинируют эти два способа применения кислорода в мартеновских печах. Последние годы начали применять специально построенные для этих целей двухванные мартеновские печи.

Очень важна автоматизация мартеновских печей, особенно их теплового режима. В период расплавления по заданной программе в газовую смесь вводят больше коксового газа, в период пониженной тепловой нагрузки - меньше. Автоматизируется перекидка клапанов в зависимости от температуры насадок и многое другое. Эти меры приводят к уменьшению расхода топлива, особенно его дорогих компонентов.

2.3. Получение стали в электрических печах

Получение стали в электрических печах из года в год увеличивается, так как в них можно получить более высокую температуру и восстановительную или нейтральную атмосферу, что очень важно при выплавке высоколегированных сталей.

Для производства стали наиболее часто применяют дуговые трехфазные электрические печи с вертикальными графитовыми или угольными электродами и непроводящим подом. Ток, нагревающий ванну в этих печах, проходит по цепи электрод-дуга-шлак-металл-шлак-дуга-электрод. Вместимость таких печей достигает 270 т.

Рисунок 4 - Трехфазная дуговая электропечь:

1 - выпускной желоб; 2 - дверка; 3 - свод; 4 - металлическое кольцо (пята свода); 5 - поперечины электродов; 6 - зубчатый сегмент для наклона печи; 7 - электромотор для наклона печи; 8 - ручной маховичок; 9 - коробка зубчатой передачи; 10 - кожух печи; 11 - электорды; 12 - охлаждаемые уплотнительные кольца; 13 - зажимы; 14 - ползуны; 15 - колонки для подъема электродов; 16 - медный кабель; 17 - стальной трос.

На рисунке 4 представлен внешний вид такой печи. Печь состоит из металлического кожуха цилиндрической формы и сферического или плоского дна. Внутри печь футерована огнеупорными материалами. Дуговые печи могут быть кислыми и основными. В основных печах подина выкладывается из магнезитового кирпича, сверху которого делается набивной слой из магнезита или доломита (150-200 мм). Соответственно в кислых печах применяют динасовый кирпич и набивку из кварцита на жидком стекле.

В цилиндрической части печи имеется рабочее окно и выпускное отверстие с желобом. Электрические печи имеют механизмы для наклона печи в сторону выпускного отверстия на 40-45° для слива металла и на 10-15° в сторону рабочего окна для скачивания шлака. Механизмы для наклона печей довольно разнообразны. Свод печи обычно сферический и через него опускают в печь три цилиндрических электрода. Рядом с печью помещены механизмы для подъема электро-дов и понижающий трансформатор, через который печь питается и регулируется ее тепловой режим. Мощность трансформатора зависит от размеров и емкости печи. Так, 10-тонные печи имеют мощность трансформатора 3500 кВ А, а 250-тонные печи - 60 000 кВА. Трансформатор печи имеет на низкой стороне несколько ступеней напряжения (от 3 до 12), переключая которые, можно регулировать энергетическую нагрузку электродов.

Загрузку печей производят через окно (с помощью мульд и завалочной машины) или через свод (с помощью загрузочной бадьи или сетки). В этом случае свод с электродами делают съемным и в период загрузки его поднимают, а печь отводят в сторону и мостовым краном сразу или в два приема загружают полную садку печи. После этого сводом вновь быстро накрывают печь.

В зависимости от состава перерабатываемого сырья, характера выплавляемой стали, а также конструкции и материала футеровки печи ход выплавки стали существенно меняется. Для примера кратко разберем плавку стали с окислением в основной дуговой печи. Эта плавка ведется в том случае, если перерабатываемое сырье содержит фосфор и значительно отличается по составу других элементов от заданной марки стали. После загрузки печи тем или иным способом электроды опускают на металлическую шихту, предварительно засыпав ее сверху известью в количестве 2-3% от массы загруженного в печь металла. Известь способствует ровному горению дуги, предохраняет материалы от поглощения газов и быстрее образует шлак. Плавление ведут при наибольшей мощности печи (на самых высоких ступенях напряжения), чтобы быстрее создать в печи жидкую фазу.

Еще до полного расплавления шихты в печь засыпают известь и железную руду, обычно около 1 % от массы металла, для получения в первом периоде плавки окислительного шлака. Через 10-15 мин после загрузки руды из печи скачивают 60-70% шлака, с ним удаляется большая часть фосфора так же, как и при плавке в мартеновской печи, преимущественно в виде фосфатов железа.

После скачивания шлака в печь опять засыпают известь (1,0-1,5% от массы металла), полностью расплавляют и нагревают металл и порциями засыпают железную руду и известь. По мере повышения температуры усиливаются окисление углерода и кипение ванны, что, как известно, способствует удалению из металла растворенных в нем газов и неметаллических включений.

В период кипения для полного удаления фосфора из металла несколько раз сливают шлак. Вместо слитого шлака наплавляется новый. Шлаки окислительного периода на заводах называют черными, так как присутствующие в них окислы железа окрашивают их в черный цвет.

После того как содержание углерода в металле достигает нижнего предела заданной марки, а содержание фосфора снижается До 0,015%, шлак опять удаляют и дают ванне «прокипеть» 25 мин, без присадки руды (т.е. проводят чистое, или безрудное, кипение). После этого начинают восстановительный период плавки. Он начинается загрузкой в печь смеси извести, плавикового шпата CaF2 и мелкого кокса для образования уже восстановительного шлака. Имеющаяся в металле ванны закись железа и марганца при этом начинает переходить в шлак и восстанавливаться имеющимся в шлаке углеродом кокса. После побеления шлака в него вводят более сильные восстановители - молотый ферросилиций или алюминий.

Отличительной особенностью выплавки стали в электрических печах является активное раскисление шлака, что приводит к диффузионному раскислению металла, непрерывно отдающему растворенную в нем закись железа за счет диффузии ее в восстановительный шлак. Такой метод раскисления предотвращает загрязнение металла неметаллическими включениями, выделяющимися при раскислении.

При выплавке углеродистой стали в дуговых электрических печах иногда применяют карбидные шлаки, имеющие более высокие восстановительные способности, чем белые. Для образования кар-бидного шлака в печи поднимают температуру, переводя печь на более высокую ступень напряжения, и увеличивают загрузку извести, плавикового шпата и особенно мелкого кокса по сравнению с их дозировкой для образования белого шлака. Такой шлак обладает большей раскислительной способностью, чем белый, так как в нем содержится карбид кальция и меньше окислов железа. Выдержка металла под карбидным шлаком значительно снижает содержание кислорода в металле не только за счет диффузии закиси железа в шлак, но и ее восстановления. При этом еще успешнее идет и удаление в шлак серы.

Продолжительность выплавки стали в дуговой печи составляет 6-5 ч и зависит от ее мощности и конструкции, выплавляемой марки стали, а также характера исходного сырья. Так, загрузка завалочной машины 35-тонной печи занимает около 1 часа, а для загрузки сверху требуется лишь несколько минут. На восста-новительный период стали простого состава требуется примерно 1,5 ч, для легированных сталей - 2-2,5 ч. Если шихта требует окисления примесей, то продолжительность периода в зависимости от количества примесей составляет от 40 до 80 мин.

Существенно отличается от описанной выплавка стали в кислой дуговой печи, которая требует кислых шлаков и не создает условий для удаления серы и фосфора. Для повышения интенсивности окисления и кипения плавку ведут при более высокой температуре, чем в основной печи и засыпают в печь железную руду в количестве 2,0-4,0% от массы садки. По мере выгорания углерода содержание закиси железа в этом шлаке снижается до 15-17%.

Расход электроэнергии на 1 т выплавляемой стали зависит от мощности и конструкции печи, продолжительности плавки, и, следовательно, характера сырья и выплавляемой и заданной марки стали. На 1 т выплавляемой углеродистой стали расходуется 500-700 кВт • ч, легированной стали - до 1000 кВт • ч.

Выплавка стали в индукционных печах применяется в черной металлургии значительно реже, чем в дуговых. Для этой цели используют обычно печи без железного сердечника, состоящие из индуктора в виде катушки (из медной трубки, охлаждаемой водой), являющейся первичной обмоткой, окружающей огнеупорный тигель, куда загружается плавящийся металл. Магнитные силовые линии, создаваемые катушкой, проходя через металл, находящийся в тигле, вызывают в нем вихревые токи, которые нагревают и плавят его. Так как в индукционных печах тепло возникает в металле, шлак в них нагревается только через металл. Вместимость современных индукционных печей достигает нередко 5 т, а в отдельных случаях и 15 т.

Крупные печи могут работать на переменном токе с промышленной частотой в 50 периодов; более мелкие нуждаются в генераторах, работающих на частоте 500-2500 периодов в секунду. Эти печи с успехом используются для переплавки чистых легированных сталей, так как высокая температура, возможность работы в вакууме и отсутствие науглероживания металла электродами дают возможность получить в них стали с малым содержанием углерода и различные сложные сплавы, к которым предъявляются повышенные требования.

3. Технико-экономические показатели и сравнительная характеристика современных способов получения стали

Технико-экономические показатели производства стали зависят от большого числа факторов и изменяются в очень широких пределах. Решающее значение среди этих факторов имеют способ производства и Применяемая технология, характер исходных материалов, конструкция и размеры сталеплавильных агрегатов, а также уровень квалификации и мастерство обслуживающего персонала.

Различные способы производства стали имеют свои преимущества и недостатки.

Преимуществом конверторных способов производства стали является незначительный расход топлива и небольшой расход других видов энергии на единицу получаемого металла, а также высокая производительность на одного рабочего и единицу производственной площади. Строительство конверторных цехов обходится намного дешевле мартеновских. Продолжительность получения стали в конверторе исчисляется минутами, а в мартеновских и электрических печах часами.

Недостатком конверторных способов получения стали является ограниченность их применения (в основном для получения только углеродистой и некоторых низколегированных сортов стали) и трудность получения стали точно заданной марки. Качество аналогичных сортов стали, полученных в мартеновских печах и конверторах, работающих только на техническом кислороде, близко, но сталь, полученная в конверторах, продуваемых воздухом, обладает пониженными механическими свойствами из-за растворенного в ней азота. В конверторах происходит наибольший угар металла (6-9%), и выход годного продукта пока не превышает 90%.

Мартеновский способ является основным способом получения стали. Главное его преимущество - большая универсальность как в смысле выплавки широкого сортамента углеродистых и легированных сталей, так и в смысле потребляемых исходных материалов. В мартеновских печах можно перерабатывать передельные чугуны любого состава как в твердом, так и в расплавленном состоянии, различный лом и вводить в шихту другие добавки (руду, окалину и т.п.).

Выход годной стали, благодаря небольшому угару, при мартеновской плавке выше, чем при конверторном переделе, и составляет 90-96% металлической завалки.

Недостатком мартеновского способа получения стали является большая продолжительность плавки, превышающая несколько часов, и большой расход топлива особенно при работе на твердой завалке.

Получение стали в дуговых электрических печах имеет неоспоримые преимущества, важнейшими из которых являются очень высокое качество получаемой стали, возможность выплавлять любые марки стали, включая высоколегированные, тугоплавкие и жаропрочные. Плавка в электрических печах дает минимальный угар железа по сравнению с другими сталеплавильными агрегатами и, что особенно важно, минимальное окисление дорогостоящих легирующих присадок благодаря нейтральной атмосфере в печи. Следует отметить удобство регулирования температурного режима и легкость обслуживания этих печей.

Недостатком выплавки стали в дуговых электрических печах является потребность в большом количестве электроэнергии и высокая стоимость передела, так как на 1 т стали при твердой закалке расходуют от 600 до 950 кВт • ч электроэнергии. Поэтому дуговые электрические печи применяют главным образом для получения высоколегированных и других дорогих сортов стали, предназначенных для ответственных изделий.

Для повышения качества стали и увеличения производитель-ности отдельных агрегатов иногда применяют так называемые дуплекс-процессы. Для этого сталь из кислородного конвертора направляют на доводку в основную мартеновскую печь или дуговую электрическую печь, но такое комбинирование пока не нашло широкого применения.

ЛИТЕРАТУРА

1. Арист Л.М. и др. Модернизация и долговечность агломерационного и доменного оборудования. М., «Металлургия», 2001.

2. Кузьмин Б.А. и др. Металлургия, металловедение и конструкционные материалы. Учебник для техникумов. М., «Высшая школа», 2000.

3. Общая металлургия. Учебник для вузов. М., Издательство «Металлургия», 2001.

4. Целиков А.И. и др. Машины и агрегаты металлургических заводов. Учебник для вузов. М., «Металлургия», 1992.

5. Целиков А.И. Металлургические машины и агрегаты: настоящее и будущее. М., «Металлургия», 1998.

Страницы: 1, 2