бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Металические конструкции бесплатно рефераты

Непроницаемость. Металлы обладают не только большой прочностью, но и высокой плотностью - непроницаемостью для газов и жидкостей. Плотность стали и ее соединений, осуществляемых с помощью сварки, является необходимым условием для изготовления резервуаров, газгольдеров, трубопроводов, различных сосудов и аппаратов.

Индустриальность. Стальные конструкции изготовляют на заводах, оснащенных специальным оборудованием, а монтаж производят с использованием высокопроизводительной техники. Все это исключает или до минимума сокращает тяжелый ручной труд.

Ремонтопригодность. Применительно к стальным конструкциям наиболее просто решаются вопросы усиления, технического перевооружения и реконструкции. С помощью сварки вы можете легко прикрепить к элементам существующего каркаса новое технологическое оборудование, при необходимости усилив эти элементы, что также делается достаточно просто.

Сохраняемостъ металлического фонда. Стальные конструкции в результате физического и морального износа изымаются из эксплуатации, переплавляются и снова используются в народном хозяйстве.

Недостатками стальных конструкций являются их подверженность коррозии и сравнительно малая огнестойкость. Сталь, не защищенная от контакта с влагой, в сочетании с агрессивными газами, солями, пылью подвергается коррозии. При высоких температурах (для стали - 600°С, для алюминиевых сплавов - 300°С) металлоконструкции теряют свою несущую способность.

При грамотном проектировании и соответствующей эксплуатации эти недостатки не представляют опасности для выполнения конструкцией своих функций, но приводят к повышению начальных и эксплуатационных затрат.

Повышения коррозионной стойкости стальных конструкций достигают включением в сталь специальных легирующих добавок, периодическим покрытием конструкций защитным слоем в виде лаков или красок, а также выбором рациональной конструктивной формы (без 'щелей и пазух, где могут скапливаться влага и пыль).

Повышение огнестойкости стальных конструкций зданий, опасных в пожарном отношении (жилые и общественные здания, склады с горючими или легковоспламеняющимися материалами) осуществляют путем устранения непосредственного контакта конструкций с открытым огнем. Для этого предусматривают подвесные потолки, огнестойкие облицовки, обмазки специальными составами. Используя специальные покрытия в виде обмазок, можно существенно увеличить предел огнестойкости.

2.3 Требования, предъявляемые к металлическим конструкциям

 

При проектировании металлических конструкций должны учитываться следующие основные требования.

Условия эксплуатации. Удовлетворение заданным при проектировании условиям эксплуатации является основным требованием для проектировщика. Оно в основном определяет систему, конструктивную форму сооружения и выбор материала для него.

Экономия металла. Требование экономии металла определяется большой его потребностью во всех отраслях промышленности (машиностроение, транспорт и т. д.) и относительно высокой стоимостью.

В строительных конструкциях металл следует применять лишь в тех случаях, когда замена его другими видами материалов (в первую очередь железобетоном) нерациональна.

Транспортабельность. В связи с изготовлением металлических конструкций, как правило, на заводах с последующей перевозкой на место строительства в проекте должна быть предусмотрена возможность перевозки их целиком пли по частям (отправочными элементами) с применением соответствующих транспортных средств.

Технологичность. Конструкции должны проектироваться с учетом требований технологии изготовления я монтажа с ориентацией на наиболее современные и производительные технологические приемы, обеспечивающие максимальное снижение трудоемкости.

Скоростной монтаж. Конструкция должна соответствовать возможностям сборки ее в наименьшие сроки с учетом имеющегося монтажного оборудования.

Долговечность конструкции определяется сроками ее физического и морального износа. Физический износ металлических конструкций связан главным образом с процессами коррозии. Моральный износ связан с изменением условий эксплуатации.

Эстетичность. Конструкции независимо от их назначения должны обладать гармоничными формами. Особенно существенно это требование для общественных зданий и сооружений.

Все эти требования удовлетворяются конструкторами на основе выработанных наукой и практикой принципов советской школы проектирования и основных направлении ее развития.

Основным принципом советской школы проектирования является достижение трех главных показателей: экономии стали, повышения производительности труда при изготовлении, снижения трудоемкости и сроков монтажа, которые и определяют стоимость конструкции. Несмотря на то что эти показатели часто при реализации вступают в противоречие (так, например, наиболее экономная по расходу стали конструкция часто бывает наиболее трудоемкой в изготовлении и монтаже), советский опыт развития металлических конструкций подтверждает возможность реализации этого принципа.

Экономия металла в металлических конструкциях достигается на основе реализации следующих основных направлений: применения в строительных конструкциях низколегированных и высокопрочных сталей, использования наиболее экономичных прокатных и гнутых профилей, изыскания и внедрения в строительство современных эффективных конструктивных форм и систем (пространственных, предварительно напряженных, висячих, трубчатых и т.п.), совершенствования методов расчета и изыскания оптимальных конструктивных решений с использованием электронно-вычислительной техники.

Эффективно и комплексно производственные требования удовлетворяются на основе типизации конструктивных элементов и целых сооружений.

Типизация металлических конструкций в России получила весьма широкое развитие. Разработаны типовые решения часто повторяющихся конструктивных элементов-колонн, ферм подкрановых балок, оконных и фонарных переплетов. В этих типовых решениях унифицированы размеры элементов и сопряжении. Для некоторых элементов разработаны стандарты.

Разработаны типовые решения таких сооружений, как радиомачты, башни, опоры линий электропередачи, резервуары, газгольдеры, пролетные строения мостов, некоторые виды промышленных зданий, сооружений и т. п.

Типовые решения разработаны на основе применения оптимальных с точки зрения затраты материала, размеров элементов, оптимальной технологии их изготовления ц возможностей транспортирования.

Типизация и проводимая на ее основе унификация и стандартизация обеспечивают большую повторяемость, серийность изготовления конструктивных элементов и их деталей на заводах и, следовательно, способствуют повышению производительности труда, сокращению сроков изготовления на основе эффективного использования более совершенного оборудования и специальных технологических приспособлений (кондукторов, копиров, кантователей и т.п.). Типизация, унификация и стандартизация создают благоприятные условия для разработки и внедрения особенно эффективного поточного метода изготовления и монтажа металлических конструкций.

Типовые проекты обеспечивают экономию металла, упорядочивают проектирование, повышают его качество и сокращают сроки строительства.

Ведущим принципом скоростного монтажа является сборка конструкций в крупные блоки на земле с последующим подъемом их в проектное положение с минимальным количеством монтажных работ наверху. Типизация создает предпосылки для сокращения сроков монтажа, снижения его трудоемкости, так как повторяющиеся виды конструкций и их сопряжении позволяют лучше использовать монтажное оборудование и совершенствовать процесс монтажа.

Конструкции из металла

 

3.1       Балки и балочные конструкции

Одним из наиболее распространенных элементов стальных конструкций является балка или элемент, работающий на изгиб.

Область применения балок в строительстве чрезвычайно широка: от небольших элементов рабочих площадок, междуэтажных перекрытий производственных или гражданских зданий до большепролетных балок покрытий, мостов, тяжело нагруженных подкрановых балок и так называемых "хребтовых" балок для подвески котлов в современных тепловых электростанциях. Пролеты мостовых балок достигают 150...200 м, а нагрузка на одну хребтовую балку котельного отделения ГРЭС при пролете до 45 м составляет ~ 60 -103 кН.

 

3.1.1       Классификация балок

 

По статической схеме различают однопролетные (разрезные), многопролетные (неразрезные) и консольные балки. Разрезные балки проще неразрезных в изготовлении и монтаже, нечувствительны к различным осадкам опор, но уступают последним по расходу металла на 10...12%. Неразрезные балки разумно применять при надежных основаниях, когда нет опасности перегрузки балок вследствие резкой разницы в осадке опор. Консольные балки могут быть как разрезными, так и многопролетными. Консоли разгружают пролетные сечения балок и тем самым повышают экономические показате ли последних.

По типу сечения балки могут быть прокатными либо составными: сварными, клепаными или болтовыми. В строительстве наиболее часто применяют балки двутаврового сечения. Они удобны в компоновке, технологичны и экономичны по расходу металла.

Наибольший экономический эффект (при прочих равных условиях) может быть получен в тонкостенных балках. Хорошим критерием относительной легкости изгибаемого элемента служит безразмерное соотношение з = 3v W2 / A3 , где W - момент сопротивления, А - площадь сечения.

Для прямоугольного сечения с шириной b и высотой h, если принять для определенности отношение h/b равным 2...6, этот показатель составляет 0,38...0,55, а для отечественных прокатных двутавров - 1,25...1,45, т.е. в принятых условиях двутавр в 3...4 раза выгоднее простого прямоугольного сечения. Кроме двутавра применяют и другие формы сечений. Так, при воздействии на балку значительных крутящих моментов предпочтительнее применение замкнутых, развитых в боковой плоскости сечений, примеры которых показаны.

Экономическая эффективность сечений, таким образом, тесно связана с их тонкостенностью. Предельно возможная тонкостенность прокатных балок определяется не только требованиями местной устойчивости стенок, но и возможностями заводской технологии прокатки профилей. Местная устойчивость стенок составных сечений может быть повышена конструктивными мерами (постановкой ребер жесткости, гофрированием стенок и т.п.).

 

3.1.2       Прокатные балки

 

Прокатные балки применяют для перекрытия небольших пространств конструктивными элементами ограниченной несущей способности, что связано с имеющейся номенклатурой выпускаемых прокатных профилей. Их используют в балочных клетках; для перекрытия индивидуальных подвалов, гаражей, складских помещений; в качестве прогонов покрытий производственных зданий; в конструкциях эстакад, виадуков, мостов и многих других инженерных сооружениях.

В сравнении с составными прокатные балки более металлоемки за счет увеличенной толщины стенки, но менее трудоемки в изготовлении и более надежны в эксплуатации. За исключением опорных зон и зон приложения значительных сосредоточенных сил, стенки прокатных балок не требуется укреплять ребрами жесткости. Отсутствие сварных швов в областях контакта полок со стенкой существенно уменьшает концентрацию напряжений и снижает уровень начальной дефектности.

 

3.1.3       Составные балки

 

В тех случаях, когда требуются конструкции, жесткость и несущая способность которых превышает возможности прокатных профилей, используют составные балки. Они могут быть сварными и клепаными, но последние применяют исключительно редко. Наибольшее применение получили балки двутаврового симметричного, реже несимметричного сечений. Такие балки состоят из трех элементов - верхнего и нижнего поясов, объединенных тонкой стенкой. Перспективными являются сечения в виде двутврв, в качестве полок которого используют прокатные тавры и холодногнутые профили.

 

3.1.4       Дистальные балки

 

Снижение металлоемкости может быть достигнуто за счет использования в одной конструкции двух различных марок сталей. Балки, выполненные из двух марок сталей, называют бистальными. В них целесообразно наиболее напряженные участки поясов выполнять из стали повышенной прочности с Ry = Ry1 (низколегированные стали), а стенку и малонапряженные участки поясов - из малоуглеродистой стали с Ry = Ry2.

В расчетном сечении такой балки при достижении в фибровых волокнах поясов у = Ry1 в примыкающей к поясам зоне стенки напряжения достигнут предела текучести уw(y>|a|) = Ry1. Центральная часть стенки и пояса находятся в упругой стадии, периферийные зоны стенки - в пластической (условия ограниченной пластичности).

Авторы норм рекомендуют при расчетах прочности таких балок руководствоваться одним из двух критериев.

- Предельных пластических деформаций: пластические деформации допускаются не только в стенке, но и в поясах; вводится ограничение на величину интенсивности пластических деформаций в стенке еip,w ? >еip,lim.

- Предельных напряжений в поясах балки: пластические деформации допускаются лишь в стенке; работа поясов ограничена упругой стадией уѓ = > Ry1.

В зависимости от нормы предельной интенсивности пластических деформаций и расчетного критерия, бистальные балки классифицируют по четырем группам.

1. Подкрановые балки под краны с режимом работы 1К-5К (ГОСТ 25546-82), для которых расчеты на прочность выполняют по критерию предельных напряжении в поясе при расчетном сопротивлении стали поясов Rѓ = Ru / гu < Ry, здесь гu = 1,3.

2. Балки, воспринимающие подвижные и вибрационные нагрузки (балки рабочих площадок, бункерных и разгрузочных эстакад. транспортерных галерей и др.), - еip,lim = 0.1 %.

3. Балки, работающие на статические нагрузки (балки перекрытий и покрытий; ригели рам, фахверка и другие изгибаемые, растянуто-изгибаемые и сжато-изгибаемые балочные элементы), - еip,lim = 0,2 %.

4. Балки группы 3, но не подверженные локальным воздействиям, не имеющие продольных ребер жесткости, обладающие повышенной общей и местной устойчивостью, - еip,lim = 0,4%.

В группы 2...4 объединены балки, для которых расчеты на прочность выполняют по критерию ограниченных пластических деформаций.

 

3.1.5       Балки замкнутого сечения

 

Балки замкнутого сечения обладают рядом преимуществ по сравнению с открытыми. К ним относятся:

- более высокая несущая способность конструкций или их элементов при работе на изгиб в двух плоскостях и на кручение. Материал в замкнутых сечениях располагается в основном в периферийных зонах по отношению к центру тяжести, это обусловливает увеличение моментов инерции и сопротивления относительно оси у (из плоскости элемента) и момента инерции на кручение;

- ввиду существенного увеличения (в десятки раз) момента инерции на кручение в элементах с замкнутыми сечениями, как правило, исключается изгибно-крутильная форма потери устойчивости;

- элементы с замкнутыми сечениями более устойчивы при монтаже, менее подвержены механическим повреждениям во время транспортировки и монтажа.

Несмотря на названные достоинства, конструктивные элементы с замкнутыми сечениями не нашли в настоящее время широкого применения. И объясняется это прежде всего низкой технологичностью и, как следствие, большей трудоемкостью изготовления.

 

Конструктивные решения

 

Замкнутые, в частности коробчатые, сечения применяют при необходимости увеличения жесткости балок в поперечном направлении, при отсутствии поперечных связей, изгибе в двух плоскостях наличии крутящих моментов, при ограниченной строительной высоте и больших поперечных силах. Подобным силовым воздействиям при названных конструктивных ограничениях подвергаются балочные конструкции мостов, силовых элементов промышленных сооружений, кранов и др. Возможные формы сечения балок представлены на.

Страницы: 1, 2, 3, 4