бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Кожухотрубчатые теплообменные аппараты бесплатно рефераты

(Вт/(м?· К))

Термическое сопротивление теплоотдачи от стенки загрязнений к нагреваемому теплоносителю, (м?· К)/Вт, ([7], формула 1.44):

((м?· К)/Вт)

Аналитически температура стенок трубы определяется по формулам, ([7], формулы 1.45, 1.46):

(?С)

(?С)

Для проверки температуру стенки определим графическим способом, ([7], рис П.1.4).

Рис.4. Графический способ определения температуры поверхности стенки трубы со стороны греющего и нагреваемого теплоносителей

1.7 Гидравлический расчет теплообменника

Целью гидравлического расчёта является определение величины потери давления теплоносителей при их движении через теплообменный аппарат.

Полное гидравлическое сопротивление при движении жидкости в трубах теплообменного аппарата определяется выражением, Па, ([7]):

(1.47)

где - гидравлическое сопротивление трения, Па, ([7]);

- потери давления, обусловленные наличием местных сопротивлений; складываются из сопротивлений, возникающих в связи с изменением площади сечения потока, обтекания препятствий, Па, ([7]);

(1.48)

(Па)

где - коэффициент трения, ([7]);

z - число ходов теплоносителя по трубному пространству, z=2.

Коэффициент трения определяется по формуле:

(1.49)

где - относительная шероховатость труб, ([7],стр.14);

- высота выступов шероховатостей ,принимаем = 0,2 мм, ([7],стр.14).

Потери давления, обусловленные наличием местных сопротивлений, Па,([7]):

(1.50)

(Па)

где  - сумма коэффициентов местных сопротивлений трубного

пространства, ([7]):

(1.51)

где , - коэффициенты сопротивлений входной и выходной камер ([1]), ,;

, - коэффициенты сопротивлений входа в трубы и выхода из них ([1]), , ;

- коэффициент сопротивления поворота между ходами, ([1]), .

Величина потерь давления греющего теплоносителя в теплообменном аппарате, Па,([7]):

(1.52)

(Па)

Величина потерь давления нагреваемого теплоносителя в межтрубном пространстве теплообменника, Па, ([7]):

(1.53)

(Па)

где  - сумма коэффициентов местных сопротивлений межтрубного пространства, ([7]):

(1.54)

где , - коэффициент сопротивления входа и выхода жидкости ([1]), ,

- коэффициент сопротивления пучка труб, ([7]):

(1.55)

х - число сегментных перегородок ([1]);

- коэффициент, определяющий поворот через сегментную перегородку ([1]),

1.8 Определение толщины тепловой изоляции аппарата

Тепловая изоляция представляет собой конструкцию из материалов с малой теплопроводностью, покрывающую наружные поверхности оборудования, трубопроводов для уменьшения тепловых потерь.

Толщину тепловой изоляции находят из равенства удельных тепловых потоков через слой изоляции и от поверхности изоляции в окружающую среду, ([7]):

(1.56)

где - температура изоляции со стороны окружающей среды, которая не должна превышать 45°C, согласно требований техники безопасности, ([7],стр.16), принимаем (°C);

- коэффициент теплоотдачи от внешней поверхности изоляционного материала в окружающую среду, Вт/м?·К, ([7],стр.16), принимаем = 25 (Вт/м?·К);

- температура изоляции со стороны аппарата; ввиду незначительного термического сопротивления стенки аппарата по сравнению с термическим сопротивлением слоя изоляции, принимают равной средней температуре нагреваемого теплоносителя, °C, ([7],стр.16), принимаем (°C) ;

- температура окружающей среды; для изолируемых поверхностей, расположенных в помещении принимается 20°С [6];

- коэффициент теплопроводности изолятора, Вт/(м· К);

Если в качестве изолятора принять полотно стеклянное теплоизоляционное марки ИПС-T-l000, ТУ 6-11-570-83, то коэффициент теплопроводности изолятора [6]:

= 0,047+0,00023 tm,

(Вт/(м· К));

где tm - средняя температура теплоизоляционного слоя, °С;

На открытом воздухе в летнее время, в помещении, в каналах, тоннелях, технических подпольях, на чердаках и в подвалах зданий: ([7]):

tm = (1.59)

(°С)

где tw - средняя температура теплоносителя, омывающего стенку, °С.

При расчетах задать температурный напор = (12 - 25) °С.

Толщина тепловой изоляции, м, ([7]):

(1.60)

(см)

2.ТЕПЛОВОЙ РАСЧЕТ ПЛАСТИНЧАТОГО ТЕПЛООБМЕННИКА

В пластинчатых теплообменниках поверхность теплообмена образована набором тонких штампованных гофрированных пластин. Эти аппараты могут быть разборными, полуразборными и неразборными (сварными). В пластинах разборных теплообменников (рисунок 1, Приложение 2) имеются угловые отверстия для прохода теплоносителей и пазы, в которых закрепляются уплотнительные и компонующие прокладки из специальных термостойких резин. Пластины сжимаются между неподвижной и подвижной плитами таким образом, что благодаря прокладкам между ними образуются каналы для поочередного прохода горячего и холодного теплоносителей. Плиты снабжены штуцерами для присоединения трубопроводов. Неподвижная плита крепится к полу, пластины и подвижная плита закрепляются в специальной раме.

Группа пластин, образующих систему параллельных каналов, в которых теплоноситель движется только в одном направлении (сверху вниз или наоборот), составляет пакет. Пакет по существу аналогичен одному ходу по трубам в многоходовых кожухотрубчатых теплообменниках. На рисунках 1 и 2 Приложения 2 даны примеры компоновки пластин. При заданном расходе теплоносителя увеличение числа пакетов приводит к увеличению скорости теплоносителя, что интенсифицирует теплообмен, но увеличивает гидравлическое сопротивление. Дополнительный канал со стороны хода нагреваемой воды предназначен для охлаждения плиты и уменьшения теплопотерь.

В соответствии с каталогом ЦИНТИхимнефтемаш (М., 1990) выпускаются теплообменники пластинчатые следующих типов: полуразборные (РС) с пластинами типа 0,5Пр и разборные (Р) с пластинами типа 0,3р и 0,6р.

Технические характеристики указанных пластин и основные параметры теплообменников, собираемых из этих пластин, даны в таблицах 1 и 2 Приложения 2.

Допускаемые температуры теплоносителей определяются термостойкостью резиновых прокладок. Для теплообменников, используемых в системах теплоснабжения, обязательным является применение прокладок из термостойкой резины, марки которой приведены в табл. 3, приложения 2. Условное обозначение теплообменного пластинчатого аппарата: первые буквы обозначают тип аппарата - теплообменник Р (РС) разборный (полусварной), следующее обозначение - тип пластины, цифры после тире - толщина пластины, далее - площадь поверхности теплообмена аппарата (м2), затем - конструктивное исполнение (в соответствии с табл. 1 Приложения 2), марка материала пластины и марка материала прокладки (в соответствии с табл. 3 Приложения 2). После условного обозначения приводится схема компоновки пластин.

Пример условного обозначения пластинчатого разборного теплообменного аппарата: теплообменник Р 0,6р-0,8-16-1К-01 - теплообменник разборный (Р) с пластинками типа 0,6р, толщиной 0,8 мм, площадью поверхности теплообмена 16 м2, на консольной раме, в коррозионно-стойком исполнении, материал пластин и патрубков - сталь 12Х18Н10Т; материал прокладки - теплостойкая резина 359; схема компоновки

что означает над чертой - число каналов в каждом ходу для греющей воды, под чертой - то же, для нагреваемой воды.

При оптимальной компоновке пластин число пакетов для горячего и холодного теплоносителя может быть неодинаковым. В условном обозначении схемы компоновки число слагаемых в числителе соответствует числу пакетов (последовательных ходов) для горячего теплоносителя, в знаменателе - для холодного; каждое слагаемое означает число параллельных каналов в пакете.

Из рассматриваемых трех теплообменников наиболее целесообразно применение теплообменников РС 0,5Пр, поскольку эти теплообменники надежно работают при рабочем давлении до 1,6 МПа (16 кгс/см2). Пластины попарно сварены по контуру образуя блок. Между двумя сваренными пластинами имеется закрытый (сварной) канал для теплофикационной греющей воды. Разборные каналы допускают давление в них до 1 МПа.

Теплообменники типа Р 0,3р могут применяться в системах теплоснабжения при отсутствии теплообменников типа РС 0,5Пр и параметрах теплоносителей до 1,0 МПа (до 10 кгс/см2), до 150 °С и перепаде давлений между теплоносителями не более 0,5 МПа (5 кгс/см2).

Применение теплообменников типа Р 0,6р (титан) в системах теплоснабжения ограничено и допустимо только при отсутствии теплообменников РС 0,5Пр и Р 0,3р при параметрах теплоносителей не более 0,6 МПа (6 кгс/см2) до 150 °С и перепаде давлений теплоносителей не более 0,3 МПа (3 кгс/см2).

Задание: Рассчитать однопакетный пластинчатый теплообменник для системы горячего водоснабжения ЦТП если известны параметры: нагрузка на отопление (ГВС) - Q = 1282 кВт; температуры греющей (сетевой) и нагреваемой воды на входе и выходе теплообменника, соответственно: - °C, °C, °C,  °C. Принять равное число параллельных каналов в пакете для греющего и нагреваемого теплоносителей.

2.1 Определение расходов и скоростей движения греющего и нагреваемого теплоносителей

Средняя температура теплоносителей, ([7])

(2.1)

(°C)

(2.1)

(°C)

По среднеарифметическому значению температур , определяются значения физических свойств греющего и нагреваемого теплоносителей ([3]):

, - плотность, кг/м?, (кг/м?), (кг/м?);

, - кинематические коэффициенты вязкости, м?/с, (м?/с), (м?/с);

, - коэффициенты теплопроводности, Вт/(м· К), (Вт/(м· К)), (Вт/(м· К));

, - критерии Прандтля, ,

Массовые расходы теплоносителей, кг/с, ([7]):

(2.2)

(кг/с)

(2.3)

(кг/с)

(м3/ч)

По максимальному расходу выбирается тип пластин. Параметры пластин, ([7], таблица П.2.1 и П.2.2):

- толщина стенки пластины, м, (м);

- площадь поверхности теплообмена пластины, м2, (м2);

- площадь поперечного сечения канала между пластинами, м2, (м2);

- смачиваемый периметр в поперечном сечении канала, м, (м) .

Эквивалентный диаметр сечения канала, м, ([7]):

(2.4)

(м)

При расчете пластинчатого водоподогревателя оптимальная скорость теплоносителя принимаем исходя из получения таких же потерь давления в установке по нагреваемой воде, как при применении кожухотрубного водоподогревателя (100-150 кПа), что соответствует скорости воды в каналах (0,3 - 0,5) м/c [4], (м/c)

Число каналов в пакете, ([7]):

(2.5)

(шт.)

Скорость второго теплоносителя, м/с, ([7]):

(2.6)

(м/с)

2.2 Расчет интенсивности теплообмена при движении теплоносителей между пластинами

Критерии Рейнольдса и Прандтля для каждого теплоносителя, ([7]):

; (2.7)

(2.7)

(2.8)

(2.8)

Определяется критерий Нуссельта для греющего и нагреваемого теплоносителей, ([7]):

- при турбулентном режиме (Re 50):

(2.9)

(2.10)

Где, ([1])

Коэффициенты теплоотдачи от греющего теплоносителя к поверхности стенки и от поверхности стенки к нагреваемому теплоносителю, соответственно, Вт/(м?· К), ([7]):

(2.13)

(Вт/(м?· К))

(2.13)

(Вт/(м?· К))

2.3. Определение площади поверхности теплообмена

Принимаются значения термических сопротивлений слоев загрязнений с двух сторон стенки, , , (м2· К)/Вт; ([7], таблица П.1.2), ((м2· К)/Вт), ((м2· К)/Вт);

В качестве материала материал пластин и патрубков - сталь 12Х18Н10Т. По средней температуре стенки определяется коэффициент теплопроводности стенки , Вт/(м · К), ([7], таблица П.1.3), (Вт/(м · К)).

Суммарное термическое сопротивление, (м? · К)/Вт, ([7]):

(2.14)

((м? · К)/Вт)

Коэффициент теплопередачи, Вт/(м? · К), ([7]):

(2.15)

(Вт/(м? · К))

Среднелогарифмический температурный напор при противотоке возьмём из предыдущих расчетов.

Требуемая поверхность теплообмена, м?,([7]):

(2.16)

(м?)

Фактическая поверхность теплообмена, м?,([7]):

(2.17)

м?

Рассчитываем относительный запас площади поверхности теплообмена , %,([7]):

(2.18)

%

2.4. Расчет гидравлических сопротивлений при движении теплоносителей

Рассчитаем гидравлические сопротивления при движении нагревающего и нагреваемого теплоносителя, МПа, ([7]):

(2.19)

(МПа)

(МПа)

где  - коэффициент общего гидравлического сопротивления, ([7], таблица П.2.2)

- - приведенная длина канала, м, ([7], таблица П.2.2), (м).

ЗАКЛЮЧЕНИЕ

В ходе выполнения курсовой работы были получены навыки применения теоретических знаний при решении теплотехнических задач. По расчёту и проектированию рекуперативных теплообменных аппаратов, а также закрепил знания по основным разделам курса «Тепломассообмен».

В данной курсовой работе был произведён тепловой конструктивный расчёт рекуперативного кожухотрубчатого теплообменника, а также тепловой расчёт пластинчатого теплообменника.

Были выполнены чертежи рекуперативного кожухотрубчатого теплообменника (формат А1) и пластинчатого рекуперативного теплообменного аппарата (формат А3).

ЛИТЕРАТУРА

1. Дытнерский, Ю.И. Основные процессы и аппараты химической технологии. Курсовое проектирование /Ю.И. Дытнерский, Г.С. Борисов, В.П. Брыков. - М.: Химия, 1991. - 412 с.

2. Копко, В.М. Пластинчатые теплообменники в системах централизованного теплоснабжения. Курсовое и дипломное проектирование: учебное пособие. /В.М. Копко, М.Г. Пшоник. - Мн.: БНТУ, 2005. - 199 с.

3. Нащокин, В.В. Техническая термодинамика и теплопередача /В.В. Нащокин. - М.: Высш. шк., 1980. - 469 с.

4. Проектирование тепловых пунктов. СП-41-101-95.

5. Промышленная теплоэнергетика и теплотехника: Справочник /под общей ред. В.А. Григорьева, В.М. Зорина. - М.: Энергоатомиздат, 1989. - Кн. 4. - 586 с.

6. Тепловая изоляция оборудования и трубопроводов. СНиП 2.04.14. - 88.

7. Тепломассообмен: метод. указания к курсовой работе по одноим. курсу для студентов специальностей 1 - 43 01 05 «Промышленная теплоэнергетика» и 1 - 43 01 07 «Техническая эксплуатация энергооборудования организаций» /авт.-сост.: А.В. Овсянник, М.Н. Новиков, А.В. Шаповалов. - Гомель: ГГТУ имени П.О. Сухого», 2007. - 37 с.

Страницы: 1, 2