бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Конструкционные расчёты резисторов бесплатно рефераты

Определим мощность резистора R8 :

P8=I02*R=0,042*120=0,144 Вт (15)

Расчёт прямолинейного резистора:

Дальнейший расчет резисторов будем проводить в соответствии с [1].

Приведём конструкционный расчёт прямолинейного резистора R1:

Зададимся коэффициентом влияния = 0.02 и вычислим коэффициенты влияния:

; ; ; . (16)

Определим среднее значение и половины полей рассеяния относительной погрешности сопротивления, вызванной изменением температуры по следующим формулам:

; (17)

где - среднее значение температурного коэффициента сопротивления резистивной пленки.

, - верхняя и нижняя предельные температуры окружающей среды.

; (18)

; (19)

Таким образом, подставляя исходные данные в формулы (17) - (19) получаем следующее:

; ;

;

; .

Определим среднее значение и половину поля рассевания относительной погрешности сопротивления, вызванное старением резистивного материала по формулам:

(20)

(21)

где - среднее значение коэффициента старения резистивной пленки сопротивления. - половина поля рассеяния коэффициента старения сопротивления резистивной пленки.

; (22)

; (23)

Таким образом, получаем следующее:

(24)

(25)

(26)

(27)

Определим допустимое значение случайной составляющей поля рассеяния суммарной относительной погрешности сопротивления по следующей формуле:

(28)

(29)

где: , , Положив МRПР = 0, тогда:

(30)

(31)

Допустимое значение случайной составляющей поля рассеяния производственной относительной погрешности сопротивления по следующей формуле:

(32)

(33)

Подставим вычисленные выше значения в данную формулу, получим:

(34)

(35)

(36)

Определим допустимое значение случайной составляющей поля рассеяния производственной относительной погрешности коэффициента формы, по следующей формуле:

(37)

Подставим значения и получим:

(38)

Определим расчетное значение коэффициента форм резистора:

(39)

Определим ширину резистивной пленки:

мм(40)мм(4мм (42)

(43)

мм. (44)

(45)

Определим сопротивление контактного перехода резистора:

(46)

(47)

Проверим следующее условие:

(48)

(49)

Определим длину резистора:

мм (50) мм (51)

Теперь определим среднее значение коэффициента формы:

(52)

Определим среднее значение МRПР и половину поля рассеяния RПР относительной производственной погрешности:

Мф=1.8% (53)

Мк=-9.3% (54)

(55)

(56)

(57)

(58)

Определим граничные условия поля рассеяния относительной погрешности сопротивления резистора:

% (59)

% (60)

% (61)

% (62)

(63)

Определяем длину резистивной пленки и площадь резистора:

мммм2 (64)

Определим коэффициент нагрузки резистора:

(65)

Подобно этому расчету рассчитываем резисторы R3, R4, R5, R6, R7, а результаты заносим в таблицу №1.

Таблица №1

Резисторы

Р, мВт

L, мм

B, мм

S, мм2

Кн

R

R1

6,5 кОм

6,5

1,5

0,3

0,45

0,72

R3

3,5 кОм

3,5

1,1

0,4

0,44

0,39

R4

2,5 кОм

2,5

1,0

0,5

0,5

0,25

R5

2,9 кОм

2,9

1,3

0,6

0,78

0,18

R6

1,0 кОм

1,0

0,5

0,5

0,25

0,2

R7

30 кОм

30,0

6,2

0,3

1,86

0,81

Расчёт резистора типа квадрат:

Приведём конструкционный расчёт резистора типа “квадрат” R2:

Зададимся коэффициентом влияния = 0.06 и вычислим коэффициенты влияния:

; ; ; (66)

Определим среднее значение и половины полей рассеяния относительной погрешности сопротивления, вызванной изменением температуры по следующим формулам:

; (67)

где - среднее значение температурного коэффициента сопротивления резистивной пленки.

, - верхняя и нижняя предельные температуры окружающей среды.

; (68)

; (69)

Таким образом, подставляя исходные данные в формулы (67) - (69) получаем следующее:

; ;

;

; .

Определим среднее значение и половину поля рассевания относительной погрешности сопротивления, вызванное старением резистивного материала по формулам:

(70)

(71)

где - среднее значение коэффициента старения резистивной пленки сопротивления.

- половина поля рассеяния коэффициента старения сопротивления резистивной пленки.

; (72)

; (73)

Таким образом, получаем следующее:

(74)

(75)

(76)

(77)

Определим допустимое значение случайной составляющей поля рассеяния суммарной относительной погрешности сопротивления по следующей формуле:

(78)

(79)

где: , ,

Положив МRПР = 0, тогда:

(80)

(81)

Допустимое значение случайной составляющей поля рассеяния производственной относительной погрешности сопротивления по следующей формуле:

(82)

(83)

Подставим вычисленные выше значения в данную формулу, получим:

(84)

(85)

(86)

Определим допустимое значение случайной составляющей поля рассеяния производственной относительной погрешности коэффициента формы, по следующей формуле:

(87)

Подставим значения и получим:

(88)

Определим расчетное значение коэффициента форм резистора:

(89)

Определим ширину резистивной пленки:

мм(90)

мм (91)

мм (92)

(93)

мм. (94)

мм (95)

Определим сопротивление контактного перехода резистора:

Ом (96)

Ом (97)

Проверим следующее условие:

(98)

(99)

Определим среднее значение коэффициента формы:

(100)

Определим среднее значение МRПР и половину поля рассеяния RПР относительной производственной погрешности:

Мф=0.0% (101)

Мк=17.8% (102)

(103)

(104)

(105)

Определим граничные условия поля рассеяния относительной погрешности сопротивления резистора:

% (106)

% (107)

% (108)

% (109)

(110)

Определим площадь занимаемую резистором:

см2 (111)

Определим коэффициент нагрузки резистора:

(112)

Подобно этому расчету рассчитываем резистор R8, а результаты заносим в таблицу №2.

Таблица №2

резисторы

B, мм

В1, мм

В2,мм

S, мм2

P, мВт

КН

R,Ом

R2

120

3,319

1,7

3,219

11,046

144

0,652

R8

120

3,134

1,6

3,034

9,824

126

0,641

Расчёт площади платы

Выбор типа подложки и корпуса

Для определения минимально допустимой площади платы, необходимо произвести расчёт площади под каждый вид плёночных (резисторов, конденсаторов, контактных площадок) и дискретных элементов.

Число контактных площадок определяется исходя из заданной схемы соединений. Технологические и конструктивные данные и ограничения позволяют оценить минимально допустимые геометрические размеры контактных площадок в зависимости от способа формирования плёночных элементов.

Общая площадь необходимая под контактные площадки:

(113)

где Si - площадь i - й площадки;

m - число площадок.

Определим площадь контактных площадок под резисторы:

мм2 (114)

Определим площадь контактных площадок под транзисторы и диодные сборки:

мм2 (115)

Определим площадь резисторов:

мм2 (116)

Определим площадь транзисторов:

мм2 (117)

Определим площадь диодов:

мм2 (118)

Суммарная (площадь) минимальная площадь платы, необходимая для размещения элементов и компонентов находится по формуле:

(119)

где Ки - коэффициент использования платы, обычно принимают Ки=2…3. Введение коэффициента использования связано с тем, что полезная площадь (площадь, занимаемая элементами и компонентами) несколько меньше полной, что обусловлено технологическими требованиями и ограничениями. Конкретное значение коэффициента использования зависит от сложности схемы и способа её изготовления.

мм2 (120)

Исходя из ориентировочного расчёта суммарной площади, проведённого выше, выбираем подложку с необходимыми размерами и выбираем типоразмер корпуса.

Данной площади платы соответствует размер подложки 12*10 мм. Геометрические размеры подложек стандартизированы. Выбираем подложку из ситалла СТ50-1. Этот материал очень широко используется для изготовления гибридных интегральных микросхем, так-так имеет очень хорошие электрофизические и механические характеристики. Минимальный габаритный размер подложки из данного материала 48*60 мм, поэтому на данной подложке изготавливается групповым методом несколько гибридных микросхем, потом эту подложку режут на заданное количество подложек, в данном случае на 24 подложки.

Данному размеру подложки соответствует корпус 158.28. Конструктивно-технологические характеристики этого корпуса даны в таблице № 3.

Таблица № 3

Условное обозначение корпуса

Тип корпуса

Кол-во

выводов

Размер зоны крепления, мм

Максимальный размер платы, мм

Масса не более,гр.

158.28

металлостеклянный

28

13,2*15,7

12,5*15,0

5,8

Заключение

Во время выполнения данного курсового проекта были освоены методики конструкционных расчётов резисторов. Проведен расчет топологии микросборки (расчет пассивных элементов схемы и их расположения на подложке). Разработана маршрутная технология микросборки. Сделан анализ конструкции микросборки. Таким образом, все требования технического задания были выполнены.

Список литературы

1. Конструирование тонкоплёночных гибридных микросборок/ сост.: Клочков А.Я., Дьяков С.Н., Чистяков В.В. - Рязань: РГРТА 2002. 160с.

2. Партала О.Н. «Радиокомпоненты и материалы: Справочник».- К Радиоаматор, М.:КУбК-а, 1998. - 720с.

3. Бодиловский В.Г., Смирнова М.А. «Справочник молодого радиста», М., Высшая школа, 1976. - 351с.

4. Конструирование и технология микросхем: Курсовое проектирование, под. ред. Коледова Л.А.- Москва: Высшая школа 1984.231с.: ил.

5. Разработка и оформление конструкторской документации РЭА: справочник, под. ред. Романычевой Э.Т. - Москва: Радио и Связь 1989. 448с.: ил.

6. Конструирование пассивных элементов плёночных микросборок: Методическое указание к практическим занятиям / Сост. Б.Н. Сажин - Рязань: РРТИ, 1987. -40с.: ил.

7. Сёмин А.С. Тонкоплёночные резисторы гибридных микросборок: Руководство к практическим занятиям по курсу « Конструкции и технология микросхем ». - Рязань: РРТИ, 1982.- 44с.

Страницы: 1, 2