бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Классификация и маркировка металлов бесплатно рефераты

ЛАМш77-2-0,05 - латунь содержащая 77% Cu, 2% Al, 0,055 мышьяка, остальное Zn (в обозначении латуни, предназначенной для обработки давлением, первое число указывает на содержание меди).

В несложных по составу латунях указывают только содержание в сплаве меди:

Л96 - латунь содержащая 96% Cu и ~4% Zn (томпак);

Лб3 - латунь содержащая 63% Cu и -37% Zn.

б) Алюминий и его сплавы

Алюминий - легкий металл, обладающий высокими тепло- и электропроводностью, стойкий к коррозии. В зависимости от степени частоты первичный алюминий согласно ГОСТ 11069-74 бывает особой (А999), высокой (А995, А95) и технической чистоты (А85, А7Е, АО и др.). Алюминий маркируют буквой А и цифрами, обозначающими доли процента свыше 99,0% Al; буква "Е" обозначает повышенное содержание железа и пониженное кремния.

А999 - алюминий особой чистоты, в котором содержится не менее 99,999% Al;

А5 - алюминий технической чистоты в котором 99,5% алюминия. Алюминиевые сплавы разделяют на деформируемые и литейные. Те и другие могут быть не упрочняемые и упрочняемые термической обработкой.

Деформируемые алюминиевые сплавы хорошо обрабатываются прокаткой, ковкой, штамповкой. Их марки приведены в ГОСТ4784-74. К деформируемым алюминиевым сплавам не упрочняемым термообработкой, относятся сплавы системы Al-Mn и AL-Mg:Aмц; АмцС; Амг1; АМг4,5; Амг6. Аббревиатура включает в себя начальные буквы, входящие в состав сплава компонентов и цифры, указывающие содержание легирующего элемента в процентах. К деформируемым алюминиевым сплавам, упрочняемым термической обработкой, относятся сплавы системы Al-Cu-Mg с добавками некоторых элементов (дуралюны, ковочные сплавы), а также высокопрочные и жаропрочные сплавы сложного хим.состава. Дуралюмины маркируются буквой "Д" и порядковым номером, например: Д1, Д12, Д18, АК4, АК8.

Чистый деформируемый алюминий обозначается буквами "АД" и условным обозначением степени его чистоты: АДоч (>=99,98% Al), АД000(>=99,80% Аl), АД0(99,5% Аl), АД1 (99,30% Al), АД(>=98,80% Аl).

Литейные алюминиевые сплавы (ГОСТ 2685-75) обладает хорошей жидко-текучестью, имеет сравнительно не большую усадку и предназначены в основном для фасонного литья. Эти сплавы маркируются буквами "АЛ" с последующим порядковым номером: АЛ2, АЛ9, АЛ13, АЛ22, АЛЗО.

Иногда маркируют по составу: АК7М2; АК21М2, 5Н2,5; АК4МЦ6. В этом случае "М" обозначает медь. "К" - кремний, "Ц" - цинк, "Н" - никель; цифра - среднее % содержание элемента.

Из алюминиевых антифрикционных сплавов (ГОСТ 14113-78) изготовляют подшипники и вкладыши как литьем так и обработкой давлением. Такие сплавы маркируют буквой "А" и начальными буквами входящих в них элементов: А09-2, А06-1, АН-2,5, АСМТ. В первые два сплава входят в указанное количество олова и меди (первая цифра-олово, вторая-медь в %), в третий 2,7-3,3% Ni и в четвертый медь сурьма и теллур.

в) Титан и его сплавы

Титан - тугоплавкий металл с невысокой плотностью. Удельная прочность титана выше, чем у многих легированных конструкционных сталей, поэтому при замене сталей титановыми сплавами можно при равной прочности уменьшить массу детали на 40%. Титан хорошо обрабатывается давлением, сваривается, из него можно изготовить сложные отливки, но обработка резанием затруднительна. Для получения сплавов с улучшенными свойствами его легируют алюминием, хромом, молибденом. Титан и его сплавы маркируют буквами "ВТ" и порядковым номером:

ВТ1-00, ВТЗ-1, ВТ4, ВТ8, ВТ14.

Пять титановых сплавов обозначены иначе:

0Т4-0, 0Т4, 0Т4-1, ПТ-7М, ПТ-3В.

г) Магний и его сплавы

Среди промышленных металлов магний обладает наименьшей плотностью(1700 кг/м3). Магний и его сплавы неустойчивы против коррозии, при повышении температуры магний интенсивно окисляется и даже самовоспламеняется. Он обладает малой прочностью и пластичностью, поэтому как конструкционный материал чистый магний не используется. Для повышения химико-механических свойств в магниевые сплавы вводят алюминий, цинк, марганец и другие легирующие добавки.

Магниевые сплавы подразделяют на деформируемые (ГОСТ 14957-76) и литейные (ГОСТ 2856-79). Первые маркируются буквами "МА", вторые "МЛ". После букв указывается порядковый номер сплава в соответствующем ГОСТе.

Например:

МА1-деформируемый магниевый сплав №1; МЛ19-литейный магниевый сплав №19

2. Композиционные материалы

а) Композиционные материалы с металлической матрицей

Композиционные материалы состоят из металлической матрицы (чаще Al, Mg, Ni и их сплавы), упрочненной высокопрочными волокнами (волокнистые материалы) тонкодисперсными тугоплавкими частицами, не растворяющимися в основном металле (дисперсно-упрочненные материалы).

Волокнистые композиционные материалы. Композиционные материалы отличаются от обычных сплавов высокими значениями временного сопротивления и предела выносливости (на 50-100%), модуля упругости, коэффициента жесткости (Е/?) и пониженной склонностью к трещинообразованию. Применение этих материалов повышает жесткость конструкций при одновременном снижении ее металлоемкости.

Дисперсно-упрочненные композиционные материалы. В отличие от волокнистых композиционных материалов в дисперсно-упрочненных композиционных материалах матрица является основным элементом, несущим нагрузку, а дисперсные частицы тормозят движение в ней дислокаций.

Композиционные материалы применяются в авиации, в космической технике, в горной промышленности, в гражданском строительстве и в других областях народного хозяйства.

б) Композиционные материалы с неметаллической матрицей

Карбоволокниты представляют собой композиции, состоящие из полимерного связующего (матрицы) и упрочнителей в виде углеродных волокон (карбоволокон). Они сохраняют прочность при очень высоких температурах, а также при низких температурах.

Эпоксифенольные карбоволокниты КМУ-1л, упрочненный углеродной лентой, и КМУ-1у на жгуте могут длительно работать при температуре до 200С.

Карбоволокниты отличаются высоким статическим и динамическим сопротивлением усталости, водо- и химически стойкие.

КМУ-1л - плотность 1.4т/м3, удельная жесткость 8.6*103км, ударная вязкость 50кДж/м2.

Бороволокниты

Они представляют собой композиции полимерного связующего и упрочнителя - борных волокон. Отличаются высокой прочностью при сжатии, сдвиге и срезе, низкой ползучестью, теплопроводностью и электропроводимостью.

Бороволокниты КМБ-1 и КМБ-1к предназначены для длительной работы при температуре 200?С.

Изделия из бороволокнита применяют в авиационной технике.

КМБ-1к - плотность 2.0т/м3, удельная жесткость 10.7*103км, ударная вязкость 78кДж/м2.

Органоволокниты

Представляют собой композиционные материалы, состоящие из полимерного связующего и упрочнителей в виде синтетических волокон. Они устойчивы в агрессивных средах и во влажном тропическом климате; диэлектрические свойства высокие, а теплопроводность низкая.

Органоволокниты применяют в качестве изоляционного и конструкционного материала в электрорадиопромышленности, авиационной технике, автостроении; из них изготовляют трубы, емкости.

Таблица №3

МАРКА

НАЗВАНИЕ

СПЛАВА

ПРИМЕРНЫЙ

СОСТАВ

НАЗНАЧЕНИЕ

ТЕХНОЛОГИЧЕСКИЙ СПОСОБ ИЗГОТОВЛЕНИЯ ЗАГОТОВОК ИЗ ДАННОГО СПЛАВА

АЛ 1

АЛЮМИНИЕВЫЙ

ЛИТЕЙНЫЙ

(СИЛУМИН)

Al;Si

ФАСОННОЕ

ЛИТЬЕ С ОТЛИВКОЙ

ЛИТЕЙНЫЙ

БрАН6-6

БРОНЗА

Al 6%;Ni6%;Cu88

ИСПОЛЬЗУЮТ ДЛЯ ПОЛУЧЕНИЯ ДЕТАЛЕЙ

ЛИТЕЙНЫЙ

ВК 8

ТВЕРДЫЙ СПЛАВ ВОЛЬФРАМОВОЙ ГРУППЫ

WC-92%

Co-8%

(кобальт)

ОБРАБОТКА ХРУПКИХ МАТЕРИАЛОВ

(чугуна,бронзы,фарфора,стекла).

ПРИМЕНЯЮТ В КАЧЕСТВЕ РЕЖУЩИХ

ПОВЕРХНОСТЕЙ ИНСТРУМЕНТОВ

СПЕКАЕМОСТЬ

Д 16

ДЮРАЛЮМИН

Al;Cu;Mg;Mn

ПРИМЕНЯЮТ В АВИАЦИИ, СТРОИТЕЛЬСТВЕ, АВТОМОБИЛЕСТРОЕ-НИЕ

ДЕФОРМАЦИЯ УПРОЧНЯЕМАЯ ТЕРМИЧЕСКОЙ ОБРАБОТКОЙ

Л 80

ЛАТУНЬ

Cu 80% ; Zn 20%

ЛЕНТА,ЛИСТЫ,ТРУБЫ,ПРОВОЛОКА.

ДЕФОРМАЦИЯ

Т14К8

ТВЕРДЫЙ СПЛАВ ТИТАНОВОЛЬФРА-МОВОЙ ГРУППЫ

WC 78%;Co 8%;TiC-14%

РЕЖУЩИЕ ЧАСТИ ИНСТРУМЕНТОВ ДЛЯ ОБРАБОТКИ ВЯЗКИХ МАТЕРИАЛОВ (сталей, латуни).

СПЕКАЕМОСТЬ

ПРАКТИЧЕСКАЯ РАБОТА № 3

1. Анализ конструкции

Механическая пружина - устройство , которое благодаря собственной упругости восстанавливает свою первоначальную форму после деформации.Чаще всего пружины изготавливают из стали, латуни и бронзы , но применяются также резина , армированные пластики и специальные сплавы металлов.

С точки зрения физики, пружина - это устройство для временного накопления энергии за счет упругой деформации под действием нагрузки . Действие пружин основано на законе Гука , ( Р. Гук , английский ученый , 1635 - 1703). Закон гласит, что деформация пружины пропорциональна силе, вызывающей деформацию.

рис. №1

Основное требование к материалам , используемым для изготовления пружин , сохранение в течение длительного времени упругих свойств. Пружинные стали должны иметь высокий предел упругости , высокое сопротивление разрушению и усталости при пониженной пластичности.

Термически упрочняемые пружинные стали обычно содержат 0,50,7 % С. Для менее ответственных пружин и пружин с мелким сечением витков применяют углеродистые стали по ГОСТ 105074. Для пружин более ответственного назначения и при большем сечении витков применяют легированные пружинные стали (ГОСТ 1495979).

2. Выбор материала

Особенностью работы деталей типа упругих элементов состоят в том, что в них используют в основном упругие свойства стали и не допускают возникновения пластической деформации при нагрузке (статической, динамической, ударной). В связи с этим данные стали должны иметь большое сопротивления малым пластическим деформациям, т.е. высокие пределы упругости (текучести) и выносливости при достаточных пластичности и сопротивлению хрупкому разрушению. Кроме того важной характеристикой пружинных сталей является релаксационная стойкость.

Для достижения данных свойств, сталь должна иметь структуру мартенсита по всему сечению детали после закалки, т.е. иметь однородную структуру, которая обеспечивается хорошей закаливаемостью и сквозной прокаливаемостью. После термообработки пружинная сталь должна содержать минимальное количество остаточного аустенита, так как у него предел упругости меньше, чем у мартенсита и следовательно он снижает сопротивление малым пластическим деформаций. Наиболее распространенный вид обработки для данной стали является полная закалка и средний отпуск. Закалённая на мартенсит сталь имеет невысокий предел упругости. Он заметно повышается при отпуске, когда образуется структура троостита. В этой структуре феррит из-за сильного фазового наклёпа имеет высокую плотность малоподвижных дислокаций. Кроме высоких упругих свойств отпуск на троостит обеспечивает повышение пластичности и вязкости. Хорошие результаты даёт изотермическая закалка на структуру нижнего бейнита. Стали 55С2, 60С2, применяют для пружин толщиной до 18 мм. Эти стали стойки к росту зерна при нагреве под закалку, но склонны к обезуглероживанию. Отжиг не производится, т.к. по механическим свойствам легированные стали не отличаются от углеродистых.

Пружинная легированная сталь, характеризуется высокими пределами текучести (упругости) и выносливости при достаточной вязкости и пластичности, применяют для изготовления рессор, пружин, буферов, деталей, работающих в условиях динамических и знакопеременных нагрузок, например:

55СГ, 60С-2, 60СГ, 50ХГ, 70С2ХА и др.

Технологические свойства: 55СГ, 60С-2.

Температура ковки: Начала 1200, конца 800. [138].

Свариваемость: не применяется для сварных конструкций.

Склонность к отпускной способности: не склонна.

Охлаждение заготовок сечением до 250 мм на воздухе, 251-300 мм - в яме.

Обрабатываемость резанием: В горячекатаном состоянии при НВ 270-320 и sB = 1080 МПа Ku тв.спл. = 0,70, Ku б.ст. = 0,27.

Таблица№4

Рессорно-пружинные и теплоустойчивые

Марки стали

Массовая доля элементов, %

ГОСТ 14959-79

DIN

SAE/AISI

C

Si

Mn

Cr

другие

65Г

Ck67 (1.1231)

1070

0,62-0,70

0,17-0,37

0,90-1,2

<0,25

 

55С2А

55Si7 (1.5026)

9255

0,53-0,58

1,5-2,0

0,60-0,9

<0,30

 

60С2А

60Si7 (1.5027)

9260

0,58-0,63

1,6-2,0

0,60-0,9

<0,30

 

60С2Г

60SiMn (1.5142)

 

0,55-0,65

1,8-2,2

0,70-1,0

<0,30

 

50ХФА

51CrV4 (1.8159)

 

0,46-0,54

0,17-0,37

0,50-0,8

0,80-1,1

V 0,10-0,20

60С2ХА

60SiCr7 (1.7108)

9262

0,56-0,64

1,4-1,8

0,40-0,7

0,70-1,0

 

60С2Н2А

 

 

0,56-0,64

1,4-1,8

0,40-0,7

?0,3

Ni 1,40-1,70

70С2ХА

71Si7 (1.5029)

 

0,65-0,75

1,40-1,70

0,40-0,6

0,20-0,4

 

Примечание: P и S ? 0,035% для качественной стали, P и S ? 0,025% для высококачественной стали 65Г

ГОСТ 14959-79

DIN

AISI/SAE/ASTM

65Г

Ck65 (1.1230)

1065

Общая характеристика: сталь рессорно-пружинная, малочувствительна к флокенообразованию, склонна к отпускной хрупкости при содержании Mn?1%, не применяется для сварных конструкций. Плотность при 20°С - 7,81х10?кг/м?. Модуль нормальной упругости при 20°С - 215 Гпа. Удельная тепло„мкость при 20-100°С - 490 Дж/(кг·°С)

Применение: пружины, рессоры, упорные шайбы, тормозные ленты, фрикционные диски, шестерни, фланцы, корпусы подшипников, зажимные и подающие цанги и другие детали, к которым предъявляются требования повышенной износостойкости, и детали, работающие без ударных нагрузок.

Виды поставляемой продукции: в горячекатаном состоянии (без термообработки) с тв„рдостью не более НВ285; в высокоотпущенном состоянии - не более НВ241 60С2А

ГОСТ 14959-79

DIN

AAISI/SAE

60С2А

60Si7 (1.5027)

9260

Общая характеристика: температура ковки, °С: начала - 1200, конца - 800. Сечения до 250мм охлаждаются на воздухе, 251-350мм - в яме. Для сварных конструкций не применяется. Нефлокеночувствительна, не склонна к отпускной хрупкости.

Применение: тяжелонагруженные пружины, торсионные валы, пружинные кольца, цанги, фрикционные диски, шайбы гровера и др.

Виды поставляемой продукции: сортовой прокат горячекатаный и кованый, прокат калиброванный и со специальной отделкой поверхности.

ГОСТ 14959-79

DIN

AISI/SAE

50ХФА

50CrMo4 (1.7228)

4150

Общая характеристика: сталь рессорно-пружинная, отличается малой склонностью к росту зерна, не чувствительна к флокенообразованию, малосклонна к отпускной хрупкости, не применяется для сварных конструкций. Плотность при 20°С - 7,80х10? кг/м? на воздухе, 251-350мм - в яме. Для сварных конструкций не применяется. Нефлокеночувствительна, не склонна к отпускной хрупкости.

Применение: ответственные клапанные пружины и рессоры автомобилей; сальники, пружины для секционных колец поршней; пружины, работающие при температурах до 300°С; пружины, подвергающиеся в процессе работы многократным переменным нагрузкам при длительном цикле работы.

Виды поставляемой продукции: сортовой прокат круглого, квадратного и прямоугольного сечений, прокат калиброванный и со специальной отделкой поверхности, кованый сорт.

3. Способ получения полуфабриката

Пруток - длинномерный металлический полуфабрикат, являющийся заготовкой для получения деталей способами пластической деформации или обработки резанием. В зависимости от назначения прутки имеют сечение круглой (наиболее часто), шестиугольной, прямоугольной, реже трапециевидной, овальной или сегментной формы. Пруток изготовляют прокаткой (крупносерийное производство прутка из достаточно пластичных материалов), прессованием (мелкосерийное производство прутка из малопластичных материалов), ковкой (пруток большого диаметра). Для повышения точности геометрии, а в ряде случаев для улучшения механических свойств прутка после прокатки или прессования подвергают калибровке путём холодного или тёплого волочения .

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1.Материаловедение и технология материалов Плошкин В,В., 2007г.

2. Ю.М. Лахтин, В.П. Леонтьева. Материаловедение. Машиностроение 1990г.

3. Технологические процессы машиностроительного производства. Оренбург, ОГУ, 1996г. Под редакцией С.И. Богодухова, В.А Бондаренко.

4. Сеть «INTERNET»

Страницы: 1, 2