бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Измерение температуры свода электросталеплавильных печей бесплатно рефераты

Основные элементы оборудования ДСП-180 представлены на рис. 1.

Выплавку стали осуществляют в рабочем пространстве ограниченном водоохлаждаемым сводом, водоохлаждаемыми панелями, стенами и подиной из огнеупорного материала.

Куполообразный водоохлаждаемый свод несет наибольшую функциональную нагрузку. В своде предусмотрены технологические отверстия для отвода плавильных газов, подачи сыпучих, ввода трех электродов и отбора импульса давления в рабочем пространстве.

Огнеупорная футеровка подины и стен выполняется из основных огнеупоров (магнезитохромитовых и хромомагнезитовых). Огнеупорная кладка подины и стен заключена в металлический защитный кожух, имеющий сферическое днище и небольшой выступ (эркер) на стороне сталевыпускного отверстия имеющего шиберный затвор. При выплавке стали в ДСП-180 используется различное сырье и материалы. Фракция используемых ферросплавов должна составлять 20-50 мм. В качестве шлакообразующих материалов используется обожженная известь собственного производства, известняк, сырой доломит, обожженный или ожелезненный доломит. Фракция извести должна составлять 10-40 мм. Содержание Са2 в плавиковом шпате должно быть не меньше 75%.

В качестве углеродосодержащих материалов используются:

* для науглероживания металла коксовая мелочь фракций 10-60 мм, с содержанием углерода не менее 85% и серы не более 0,7%;

* для вспенивания и раскисления шлака в нем графит и (или) антрацит фракций: 0,1-1 мм не более 10%, 1-3 мм - 90% при содержании серы не более 0,3%.

Основные технические и эксплуатационные характеристики ДСП-180 представлены в таблице1 Комбинированные газокислородные фурмы-горелоки RСВ («Refining Combined Burners») используются в качестве эффективных дополнительных источников тепловой энергии и в качестве фурм для продувки кислородом.

Мощность каждой комбинированной горелки - 3500 кВт. Газокислородная горелка КСВ имеет два режима работы:

* в режиме «горелка» расход кислорода до 800 м3/ч при расходе природного газа до 350 м3/ч;

* в режиме «фурма» расход кислорода составляет до 2800 м3/ч при расходе природного газа до 120 м3/ч.

Комбинированные фурмы-горелки устанавливаются в специальных отверстиях третьей, четвертой, шестой, тринадцатой, пятнадцатой и шестнадцатой водоохлаждаемых панелей печи.

Размещение и выбор направления факелов горелок определяется наличием холодных зон в печи. Горелки ориентируются в направлении холодных зон и по касательной относительно электродов для предотвращения их окисления.

Принцип работы газокислородных комбинированных фурм-горелок заключается в регулирования конфигурации факела горелки в различные периоды расплавления и нагрева. Основной поток кислорода направлен в ванну расплава. Однако одной высокой кинетической энергии струи вдуваемого газа не достаточно для поддержания когерентного потока на требуемой длине. Для формирования высокоскоростной когерентной струи необходимо направлять поток кислорода другой газовой струей. Это обеспечивается газовым потоком, который окружает кислородный поток и поступает по внешнему контуру сопла. Благодаря такой комбинации окружающий поток кислорода природный газ действует как «рубашка». Поэтому основной поток кислорода остается сосредоточенным на требуемой расчетной длине.

Основной задачей кислородных фурм (инжекторов) РСI («Post Combastion Injector») является вдувание в печь кислорода с целью получения дополнительной тепловой энергии от реакции окисления топлива и дожигания СО отходящих плавильных газов в пределах рабочего пространства ДСП.

Использование фурм РС1 позволяет увеличить производительность сталеплавильного агрегат, уменьшить расход электроэнергии и снизит удельный Расход графитированных электродов.

Система подачи (вдувания) углеродсодержащих материалов используется для образования и поддержания вспененного шлака, частичного раскисления печного шлака порошкообразным коксом. Для введения углеродсодержащих материалов в потоке осушенного воздуха используется дозирующее устройство, расположенное вблизи ДСП, в комплекте с расходным бункером, дозирующим и взвешивающим оборудованием в виде автономного узла с автоматической электрической системой управления

Углесодержащие материалы подаются в псевдосжиженном состоянии. Для вдувания используется два инжектора, установленные в пятой и четырнадцатой охлаждаемых панелях печи. Расход углеродсодержащих материалов регулируется автоматической системой, поддерживающий величину расхода в пределах от 20 до 100 кг/мин при расходе сухого воздуха до 480 м3/ч.

Предусмотрена возможность донной продувки металла инертным через три пористые вставки с общим расходом аргона 1,2-3,6 м3/ч. Для управления подачей инертного газа предусмотрен вентильный стенд. При выплавки марок стали с нерегламентированным содержанием азота, для продувки ванны может использоваться азот. В случае преждевременного выхода из рабочего состояния пористых пробок их засыпают огнеупорной массой, а работа ДСП продолжается без продувки до ближайшего холодного ремонта.

Таблица 1. Основные технические и эксплуатационные характеристики ДСП-180

Наименование параметров

Значение

Масса плавки:

- номинальная, т

- максимальная, т

- остаток металла после выпуска, т

180

210

30

Мощность трансформатора, МВА

150

Вторичный ток, кА

70

Частота тока, Гц

50

Высоковольтное напряжение, кВ

35

Вторичное напряжение, В

800 - 1225 - 1400

Количество рабочих ступеней трансформатора, ед.

23

Диаметр кожуха на уровне откосов, мм

7400

Диаметр выпускного отверстия, мм

200

Диаметр распада электродов, мм

1200±50

Диаметр графитированных электродов, мм

600-610

Ход электродов, мм

6300

Максимальная скорость перемещения электродов:

- автоматический режим, мм/с

- ручной режим, мм/с

80-120

300

Высота подъема свода, мм

400

Угол поворота свода, град

70

Угол наклона печи:

- на слив металла, град

- на слив шлака, град

20

10

Объем загрузочной бадьи, м3

16,5

Объем ванны, м3

29,7

Глубина ванны, мм

1290

Производительность по вдуванию:

- кислорода, нм3/ч

- природного газа, нм3/ч

- углерода, кг/мин

6 х 2800

6 x 350

2 x 60

Мощность горелок RCB, кВт

6 x 3500

Высота системы охлаждения стен, мм

3210

Общая площадь водоохлаждаемых элементов, м2

75

Площадь водоохлаждаемой панели свода, м2

57

Расход воды на охлаждение:

- свод, м3/ч

- кожух печи, м3/ч

- трансформатор, м3/ч

- общий расход, м3/ч

550

950

160

1950

Дуговая сталеплавильная печь 180 практически оснащена со всеми современными устройствами для ведения высоко производительного технологического процесса эти: комбинированные газокислородные фурмы-горелоки RCB («Refining Combined Burners» 6 шт) используются для сжигания газа в качестве эффективных альтернативных дополнительных источников тепловой энергии и в качестве фурм для продувки кислородом.

Мощность каждой комбинированной горелки - 3500 кВт. Газокислородная горелка RCB имеет два режима работы:

· в режиме «горелка» расход кислорода до 800 м3/ч при расходе природного газа до 350 м3/ч;

· в режиме «фурма» расход кислорода составляет до 2800 м3/ч при расходе природного газа до 120 м3/ч.

Комбинированные фурмы-горелки устанавливаются в специальных отверстиях третьей, четвертой, шестой, тринадцатой, пятнадцатой и шестнадцатой водоохлаждаемых панелей печи.

Размещение и выбор направления факелов горелок определяется наличием холодных зон в печи. Горелки ориентируются в направлении холодных зон и по касательной относительно электродов для предотвращения их окисления.

Принцип работы газокислородных комбинированных фурм-горелок заключается в регулирования конфигурации факела горелки путем изменения соотношения природный газ - кислород в различные периоды расплавления и нагрева. Основной поток кислорода при продувке направлен в ванну расплава.

- двух кислородных фурм (инжекторов) PCI («Post Combastion Injector») является вдувание в печь кислорода с целью получения дополнительной тепловой энергии от реакции окисления топлива и дожигания СО отходящих плавильных газов в пределах рабочего пространства ДСП. Расход кислорода в этом случае составляет до 500 м3/ч.

Использование альтернативных источников тепловой энергии позволяет увеличить производительность сталеплавильного агрегат, уменьшить расход электроэнергии и снизить удельный расход графитированных электродов за счет интенсификации процесса расплавления шихты.

- два инжектора, установленные в пятой и четырнадцатой охлаждаемых панелях печи. Расход углеродсодержащих материалов регулируется автоматической системой, поддерживающей величину расхода в пределах от 20 до 100 кг/мин при расходе сухого воздуха до 480 м3/ч.

- три пористые вставки донной продувки металла инертным газом с общим расходом аргона 1,2-3,6 м3/ч. Для управления подачей инертного газа предусмотрен вентильный стенд. В случае преждевременного выхода из рабочего состояния пористых пробок их засыпают огнеупорной массой, а работа ДСП продолжается без продувки до ближайшего холодного ремонта.

ДСП-180 может работать в ручном и автоматическом (система АРКОС) режимах энергопотребления и управление подачи природным газом при различных шихтовках плавки.

В ручном режиме ДСП-180 предусматриваются два директивно заданных программных режима работы горелок RCB. При автоматическом (система АРКОС) режиме используются пять директивно заданных программных режимов (профилей работы), которые в зависимости от реальных условий загрузки шихты может выбирать сталевар (технолог-оператор) и которые одновременно определяют программно заданные режимы работы горелок RCB. Программный режим энергопотребления включает:

· 1-й профиль - «холодная» печь, используется при вводе печи в работу после холодного ремонта;

· 2-й профиль - «горячая» печь при шихтовке плавки 100% металлического лома;

· 3-й профиль - «горячая» печь при содержании в шихте 75% металлолома и 25% жидкого чугуна;

· 4-й профиль - «горячая» печь при содержании в шихте 60% металлолома и 40% жидкого чугуна;

· 5-й профиль - программа работы ДСП без ФКУ (фазокомпенсирующего устройства) при максимальной ступени напряжения не выше 12 для предотвращения колебания напряжения в подводящей сети.

Производство стали в ДСП - 180

Производство стали в ДСП - 180 характеризуется цикличностью. Плавка содержит следующие основные технологические операции.

1. Заправка печи (межплавочный простой).

2. Завалка (загрузка шихты, включая заливку жидкого чугуна и подвалку металлошихты).

3. Расплавление завалки и полное расплавление шихты.

4. Окислительный период.

5. Восстановительный период (если не используются процессы внепечной доводки стали).

6. Выпуск стали.

Каждый из этих периодов характеризуется отличительными технологическими, физико-химическими и энергетическими процессами, происходящими в рабочем пространстве ДСП.

В периоды с 3 по 5 печь работает под током. Каждый из этих периодов характеризуется определенными ограничениями на величину подводимой к ДСП электрической мощности.

Период плавления составляет по продолжительности более половины длительности всей плавки. При этом расходуется до 70% всей электроэнергии, потребляемой за плавку. Задача этого периода в основном энергетическая: нагреть холодные шихтовые материалы, расплавить их и обеспечить нагрев расплава до заданной температуры.

Продолжительности плавки по профилям на ДСП - 180

Продолжительность плавки 577361 в ДСП №2 25.12.2007 г. при использовании в шихте 100% металлического лома (профиль №2) при загрузке ме-таллошихты четырьмя корзинами составила 55 мин при времени работы под током 35 мин и при общем весе металлошихты 222.8 т. Удельный расход электроэнергии 360 кВтч/т.

Продолжительность плавки 577406 в ДСП №2 27.12.2007 г. при использовании металлошихты 170 т и 50 т жидкого чугуна (профиль №3) при загрузке шихты двумя корзинами (120.483 т и 50.89 т) составила 46 мин при времени работы под током 33 мин. Удельный расход электроэнергии 290кВтч/т.

Продолжительность плавки 450922 в ДСП №1 26.02.2007 г. при использовании в шихте 60% металлошихты и 40% жидкого чугуна (профиль №4) при загрузке шихты двумя корзинами составила 56 мин.

Технологические периоды

Завалка (загрузка) шихты в печь. Основную часть шихты составляет металлошихта - лом и жидкий чугун. При необходимости, вместе с ломом и чугуном в завалку дают металлические материалы, содержащие легирующие элементы, имеющие низкое сродство к кислороду - N1 и Си, иногда Мо и Со. Вместе с металлошихтой загружают некоторое количество неметаллической шихты: известь (2-3% от садки); твёрдые окислители (агломерат или окатыши (1,0-1,5%)), если требуется обезуглероживание и дефосфорация; углеродосодержащие материалы (коксик, электродный бой) в случаях недостатка углерода в металлошихте. Содержание углерода в шихте должно быть на 0,3--0,5% выше его содержания в стали. Для этого обычно достаточно иметь 5-10% чугуна в металлошихте.

Завалку в печь осуществляют сверху при открытом своде с помощью двух-трех бадей за 5-10 мин. Обычно завалку организуют так, чтобы на подину сначала упали куски мелкого лома, которые защищают подину от повреждения падающими крупными кусками лома. Стараются, чтобы крупный лом вперемешку со средним попал в срединную часть печи, а по краям, на откосах печи, расположился лом средних размеров. Последними заваливают чугун и остатки мелкого лома - легкоплавкие материалы. Это обеспечивает в самом начале периода плавления быстрое образование так называемых колодцев, погружение электродов вглубь шихты, что улучшает нагрев последней и защищает (экранирует) стены и свод от интенсивного излучения электрических дуг. Неметаллические материалы либо добавляются в бадьи с металлошихтой, либо подаются по тракту сыпучих материалов. Второй способ позволяет присаживать их и в другие периоды плавки. Кокс и электродный бой, если они нужны, заваливают на первый слой мелкого лома. Известь и твёрдые окислители загружают после завалки первой бадьи. Следует иметь в виду, что твёрдые окислители и науглероживатели несовместимы, их совместная завалка чревата выбросами из печи в период плавления.

Страницы: 1, 2, 3, 4