бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Гидравлический расчет проточной части центробежного насоса НЦВС 40/30 бесплатно рефераты

Таблица 2.4.1. Расчет профиля лопатки

1

2

3

4

5

6

Ri

0,03

0,039

0,048

0,058

0,0676

0,077

B

0,016

0,0128

0,1092

0,0096

0,0087

0,0081

Cґm

3,799

3,611

3,495

3,959

3,083

2,906

W

10,5

10,22

9,94

9,66

9,38

9,1

Cґm/W

0,362

0,553

0,346

0,337

0,329

0,319

T

0,031

0,0412

0,0511

0,0609

0,0707

0,0806

д

5 · 10-3

5 · 10-3

5 · 10-3

5 · 10-3

5 · 10-3

5 · 10-3

д /t

0,159

0,1213

0,097

0,082

0,0707

0,062

0,521

0,474

0,444

0,419

0,3997

0,381

в0

31,4

28,29

26,35

24,78

23,56

22,39

tgв

0,61

0,54

0,49

0,46

0,44

0,41

ДRґi

0

0,009

0,009

0,009

0,009

0,009

50,82

44,41

39,59

35,49

32,65

31,68

Дцi = ДRi +

0

0,42

0,37

0,33

0,31

0,297

0

24,07

45,29

64,2

81,97

99

0,42

0,79

1,12

1,43

1,727

0

47

41,8

37,35

33,62

31,68

Исползуя полученные значения строим профиль лопаток (см. рис. 2.3.).

2.5 Расчет спиральной камеры кругового сечения

2.5.1 радиус контрольной цилиндрической поверхности охватывающей колесо на некотором расстоянии, достаточном для выравнивания пульсации скорости вызываемой конечным числом лопаток в колесе, находится по формуле:

м

м

2.5.2 Ширина входа в спираль с учетом осевого приращения колеса

м

2.5.3 Радиус кругового сечения спиральной камеры

,

где k - коэффициент, который находится по формуле

Радиус спиральной камеры определяется для восьми сечений, для различных значений угла ц, которым задается. Расчет радиусов ведем в табличной форме (табл. 2.5.3.).

Таблица 2.5.3.Расчет радиусов

ц°

с

R0=R3+смин

Rc=R3+2с

1

2

3

4

5

6

7

8

I

45°

0,0002

0,0004

0,000032

0,005649

0,00585

0,08515

0,091

II

90°

0,0004

0,0008

0,000064

0,00799

0,00839

0,08769

0,9608

III

135°

0,0006

0,0012

0,000095

0,00979

0,01039

0,08969

0,10008

IV

180°

0,0008

0,0016

0,000128

0,011299

0,012099

0,091399

0,103498

V

225°

0,001

0,0021

0,00016

0,012634

0,01363

0,09293

0,10656

VI

270°

0,0012

0,0024

0,00019

0,013839

0,01504

0,09434

0,10938

VII

315°

0,0014

0,0026

0,000223

0,014948

0,016348

0,095648

0,111996

VIII

360°

0,0016

0,0032

0,000255

0,01598

0,01758

0,09688

0,11946

2.6 Подвод жидкости к рабочему колесу

Форма подводящего канала к рабочему колесу оказывает существенное влияние на равномерное распределение скоростей на входе в колесо, а так же на КПД и кавитационные качества. При консольном расположении рабочего колеса наилучшим типом подводящего канала является осевой конический патрубок (конфузор), который, сужаясь по направлению к колесу, обеспечивает повышение скорости потока на 15-20% равномерный ассиметричный поток на входе в колесо. Размер входного патрубка определяется по сечению всасывающего патрубка, который рассчитывается, исходя извеличины допускаемых гидравлических сопротивлений. Для насосов повышенной быстроходности в патрубке устанавливается втулка обтекаемой формы, соединяется с ним плоскими ребрами, что обеспечивает отсутствие закручивания потока на входе в рабочее колесо.

Для насосов, вал которых опирается на подшипники с двух сторон рабочего колеса, применяется спиральный подвод.

2.7 План скоростей потока жидкостей на входе и выходе рабочего колеса

Характеристика потока в любой точке определяется величиной и направлением скоростей, для чего должен быть построен план, или треугольник скоростей. Абсолютная скорость частицы жидкости в каждой точке колеса при его вращении складывается из переносной окружной скорости колеса и относительной скорости по лопасти колеса.

Построение треугольника скоростей ведется на профиле лопатки (рис. 2.5.)

2.8 Определение осевых сил, выбор устройства для уравнения осевых сил

2.8.1 Гидравлическая сила, действующая на рабочее колесо:

,

где и - объемный вес, кг/м3; г = 1000 кг/м3

k = r0 +d1 м,

где r0 - радиус входа в колесо

d - толщина обвода колеса на выходе, d = 7-10 мм

d = 7,5 мм

rBT = (1,12 - 1,5) · 0,071 = 0,0132 - 0,0165

Принимаем

rBT = 0,016

HiТпот = с · H17 м.вод.ст

HiТпот = 0,7 · 35,71 = 25,48 м.вод.ст

Н

2.8.2 Сила реакции, возникающая от изменения направления движения воды в рабочем колесе.

Н,

где С0 - скорость входа, м/с

Н

2.8.3 Дополнительная осевая сила возникающая при аварийном износе переднего уплотнителя определяется по формуле Ломакина А. А.

(Н),

где r2 - наружный радиус рабочего колеса, м

U2 - окружная скорость колеса, м/с

r1 - радиус входа с учетом толщины обвода, м

? - длина щелевого уплотнения, м; ? = 10 ч 25 мм.

Принимаем ? = 20 мм.

Н

2.8.4 Результирующая гидравлическая осевая сила

P = p1 + p3 + p2 (H)

Р = 662,51 + 129,1 - 35,1 = 756,56 Н

2.8.5 Управление рабочих колес одноступенчатых насосов чаще всего выполняется с помощью разгрузочных отверстий в задней стенке колеса. Этот способ управляющей осевой силы состоит в том, что плоскость за задней стенкой рабочего колеса, образованная неуравновешенной его площади и стенкой корпуса насоса, соединяется с всасывающей полостью колеса или насоса.

2.9 Расчет объемных потерь

2.9.1 Потенциальный напор в рабочем колесе

Нпот= с · Нiт (дж/кг)

Нпот= 0,7 · 357 = 249,97 дж/кг = 25,48 м.вод.ст.

2.9.2 Перепад напора на концах уплотнения рабочего колеса определяется по формуле:

(дж/кг)

R2 - диаметр выхода из насоса, мм

R1 = R0 + d

D - толщина отвода на выходе, d = 5,5 мм

дж/кг = 25,34 м.вод.ст.

2.9.3 Величина радиального зазора

B1 = 0,35 мм

Максимально допустимый зазор определяется по формуле:

В = 0,3 + 0,04 · Ду, мм,

где Ду - диаметр уплотнения, Ду = 0,09

В = 0,3 + +0,04 · 0,09 = 0,3 мм

2.9.4 Длина щели уплотнения

? = (10 - 25), м

Принимаем ? = 20

2.9.5 Коэффициент сопряжения

? = (0,04 - 0,07) = 0,05 м

2.9.6 Коэффициент расхода

2.9.7 Утечки в уплотнении рабочего колеса

, м3/ч

м3/ч

2.9.8 Расчет уточненного объемного КПД.

2.10 Расчет мощности электродвигателя

2.10.1 Полный уточненный КПД

2.10.2 Мощность колеса

, Вт

Вт

2.10.3 Мощность двигателя с учетом 10% запаса

, Вт

вт

2.11 Построение напорных характеристик

2.11.1 Для построения напорных характеристик определяем коэффициент циркуляции

,

где ш - коэффициент

Z - число лопаток

D1 - приведенный диаметр входа в колесо, м

D2 - диаметр колеса, м

2.11.2 Уточненная теоретическая передача

, м3/с

м3/с

2.11.3 Теоретический напор известен

Нт = 36,4 м.вод.ст.

2.11.4 Напорная характеристика насоса с бесконечным числом лопаток есть прямая в осях Q и Н.

При Qт? = 0; Нт? = /g = 24,182/9,81 = 59,6 м.вод.ст.

При Qт? = 0,0116; Нт? = Нт/k = 36,4/0,826 = 44,7 м.вод.ст.

2.11.5 Напорная теоретическая характеристика насоса с точным числом лопаток тоже есть прямая.

Определим коэффициенты этой прямой.

При Qт? = 0; Нт? = · k/g = (24,182/0,826)/9,81 = 48,5 м.вод.ст.

При Qт = Qт?; Нт = К · Нт? = 36,4 · 0,826 = 30,1 м.вод.ст.

2.11.6. Гидравлические потери в рабочем колесе зависят от величины подачи Qn и определяется по формуле:

м.вод.ст.,

где з2 - гидравлический КПД

Нт - теоретический напор, м.вод.ст.

Qтi -теоретическая подача, м3/с

QТнап- номинальная подача, м3/с

2.11.7 Гидравлические потери на удар при входе потока на лопатки рабочего колеса определяется по формуле:

м.вод.ст.,

где Н - напор, м.вод.ст.

К - коэффициент циркуляции

U2 - окружная скорость

g - ускорение силы тяжести, м/с2

Нок/Н1 = 1

м3/с,

где Нок - напор при закрытой крышке.

Значение величины h2 = f(QTi) приведены в таблице 2.11.

Таблица 2.11.1. Гидравлические потери

Значение подачи

QTi · 10-3 m3/с

Гидравлические потери рабочего колеса h1 м.вод.ст.

Суммарные потери на удар при выходе h2 м.вод.ст.

Суммарные гидравлические потери

hУ = n1 = n2

0

0

24

24

1,45

0,06

15

15,114

2,9

0,238

8,8

9,2

4,35

0,536

6,56

7,5

5,8

0,952

4,24

6,075

7,25

1,488

2,51

5,37

8,7

2,143

0,98

5,12

Страницы: 1, 2, 3