бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Возвратные задачи бесплатно рефераты

J(2n) = 2∙J(n) − 1    при n ≥ 1    (5)

Теперь можно быстро продвигаться к большим n. Например, нам известно, что J(10) = 5, поэтому J(20) = 2∙J(10) − 1 = 2∙5 − 1 = 9, аналогично J(40) = 2∙J(20) − 1 = 17, и вообще можно вывести, что

                                      J(5∙2m) = 2m+1+1.

J(5∙2m) = J(2∙2m-1∙5) = 2∙J(2m-1∙5) − 1 = 2∙J(2∙2m-2∙5) − 1 = 22∙J(2m-2∙5)− 21 − 1 = =23∙J(2m-3∙5) − 22 − 21 − 1=24∙J(2m-4∙5) − 23 − 22 − 21 − 1= …= 2m∙J(5) − (2m-1+2m-2+     +…+23+22+21+1) = 2m∙J(5) −  = 2m∙3 − 2m + 1 = 2m+1+1.

Теперь посмотрим, что будет в случае, когда имеется 2n+1 людей. После первого обхода жертва с номером 1 уничтожается сразу после жертвы с номером 2n, и мы остаемся с номерами:

Получили почти первоначальную ситуацию с n людьми, но на этот раз номера уцелевших удваиваются и увеличиваются на 1. Таким образом,

J(2n+1) = 2∙J(n) + 1    при n ≥ 1  (6)

Объединение уравнений (5) и (6) с уравнением J(1)=1 дает рекуррентное соотношение, которое определяет J во всех случаях:

                            J(1) = 1

                            J(2n) = 2∙J(n) − 1           при n ≥ 1                                 (7)

                        J(2n+1) = 2∙J(n) + 1          при n ≥ 1

Решим данное рекуррентное соотношение. Составим таблицу первых значений J(n):


n

1

2    3

4   5   6   7

8    9    10    11    12     13    14    15

16

J(n)

1

1    3

1   3   5   7

1    3     5      7      9      11    13    15

1

Если сгруппировать значения n по степеням двойки (в таблице эти группы отделены вертикальными линиями), то в каждой группе J(n) всегда будет начинаться с 1, а затем увеличиваться на 2. Итак, если записать n в виде n = 2m+k, где 2m – наибольшая степень 2, не превосходящая n, а k – то, что остается, то решение рекуррентного соотношения должно иметь вид:

                 J(2m+k) = 2k+1      при  m ≥ 0  и  0 ≤ k < 2m                           (8)

(Если 2m ≤ n < 2m+1, то остаток k = n−2m удовлетворяет неравенству 2m≤k+2m<2m+1, т.е. 0 ≤ k < 2m)

Докажем (8) методом математической индукции по m.

1)       База:  m = 0   =>   k = 0

                J(20+0) = J(1) = 2∙0 + 1 = 1      (верно);

2)        Индуктивный переход: пусть верно для всех чисел t ≤ (m − 1). Докажем для t=m:

a)            если m > 0 и 2m+k=2n, то k – четно и  J(2m+k) = J(2(2m-1+)) = 2∙J(2m-1+) − 1  2(2∙ + 1) −1 = 2k + 1

b)           если m > 0 и 2m+k=2n+1, то k – нечетно (т.е. k=2t+1) и  J(2m+k) = = J(2m+(2t+1)) = J(2(2m-1+t) +1)  2∙J(2m-1+ t) + 1  2(2t+1) + 1 = 2k + 1

Другой способ доказательства, когда k – нечетно:

Можно заметить, что  J(2n+1) − J(2n) = 2, тогда J(2m+k) = 2 + J(2m + (k− −1)) J(2m+k) = 2 + 2(k −1) + 1 => J(2m+k) = 2k+1.

Из пунктов 1 и 2 следует:   при  m ≥ 0  и  0 ≤ k < 2m     J(2m+k) = 2k+1.

Решение всякой задачи может быть обобщено так, что его можно применить к более широкому кругу задач. Поэтому изучим решение (8) и исследуем некоторые обобщения рекуррентного соотношения (7).

Обратимся к двоичным представлениям величин  n и J(n) (т.к. степени 2 играли важную роль в нашем поиске решения).

                                   n = (bm bm-1 … b1 b0)2 ;

т.е.                     n = bm2m + bm-12m-1 + … + b12 + b0

где каждое bi равно 0 или 1, причем старший бит bm равен 1. Вспоминая, что n=2m+k, последовательно получаем:

                                     n = (1 bm-1 … b1 b0)2

                                     k = (0 bm-1 … b1 b0)2

(т.к. k= n−2m = 2m + bm-12m-1 + … + b12 + b0 − 2m = 0∙2m + bm-12m-1 + …+ b12 + b0)

                                     2k = (bm-1 … b1 b0 0)2

(т.к. 2 k=2(bm-12m-1 +bm-22m-2  …+ b12 + b0)=bm-12m + bm-22m-1 + … + b122 + b02+0)

                                  2k+1 = (bm-1 … b1 b0 1)2

                                  J(n) = (bm-1 … b1 b0 bm)2

(т.к.  J(n) = 2k+1 и bm = 1)

Таким образом, мы получили, что

                      J((bm bm-1 … b1 b0)2) = (bm-1 … b1 b0 bm)2                             (9)

т.е. J(n) получается путем циклического сдвига двоичного представления n влево на один сдвиг.

Рассмотрим свойства функции J(n).

Если мы начнем с n и итерируем J-функцию m+1 раз, то тем самым осуществляем циклический сдвиг на m+1 битов, а т.к. n является (m+1)-битовым числом, то мы могли бы рассчитывать в итоге снова получить n. Но это не совсем так. К примеру, если n = 27, то J(11011) = ((10111)2), но затем J(10111) = ((1111)2), и процесс обрывается: когда 0 становится старшим битом – он пропадает (т.к. принято, что коэффициент при старшей степени не равен 0). В действительности J(n) всегда должно быть ≤ n по определению, т.к. J(n) есть номер уцелевшего; и если J(n) < n, мы никогда не сможем получить снова n в следующих итерациях.

Многократное применение J порождает последовательность убывающих значений, достигающих, в конце концов «неподвижной точки» n, такой, что J(n)=n. Докажем, что J порождает последовательность убывающих значений, т.е. покажем, что 2n > 2n-1 + 2n-2 +…+21 + 1 при n ≥ 1.

Докажем методом математической индукции по n:

1) База:   n=1,     21 > 20  (верно);

2) Индуктивный переход: пусть верно для всех чисел t ≤ (n–1) , т.е. выполняется неравенство 2t-1 > 2t-2 + 2t-3 +…+21 + 1. Докажем для t=n:   

(2n-1 > 2n-2 + 2n-3 +…+21 + 1) умножим на 2, получим 2n > 2n-1 + 2n-2 +…+22 + 21. Левая и правая части неравенства четные числа, тогда между ними есть хотя бы одно нечетное число, следовательно, прибавление 1 к правой части неравенства (четное число +1 = нечетное число) неравенство не изменит. Т.о. получаем нужное нам неравенство: 2n > 2n-1 + 2n-2 +…+21 + 1 при n ≥ 1.

Свойство циклического сдвига позволяет выяснить, чем будет «неподвижная точка»: итерирование функции m и более раз всегда будет порождать набор из одних единиц со значением , где ν(n) – число равных 1 битов в двоичном представлении n (это следует из того, что имеем последовательность 20 , 21 , 22 ,…,2n-1, 2n, и по формуле суммы геометрической прогрессии получаем ). Так, например: ν(27) = ν(11011) = 4, тогда J(J(…J(27)…)) =24 −1=15

2 и более

 
 


Теперь давайте вернемся к нашему первоначальному предположению, что J(n) =  при четном n. Вообще-то это неверно, но мы выясним, когда это верно: J(n) = , тогда 2k+1 =  => k = . Если число k = = целое, то n= 2m + k будет решением, т.к. k < 2m. Нетрудно убедиться, что (2m − 2) кратно 3, когда m нечетно, но не когда m четно. Действительно, если m – нечетно, то 2m − 2 = 22k+1 − 2 = 2(4k − 1). Докажем методом математической индукции, что (4k − 1) делится на три (где ):

1) База:   k=1,     4−1=3, три делится на три (верно);

2) Индуктивный переход: пусть верно для всех чисел t ≤(k−1), т.е (4t−1) делится на три. Докажем для t=k:

4k − 1 = 4(4k-1 − 1) + 3   (4k-1 − 1) делится на три, и 3 делится на три => (4к−1) делится на три.

Таким образом, показали, что для m – нечетного   (2m − 2) делится на 3.

Теперь покажем, что при m – четном (2m − 2) не делится на 3. Предположим противное: пусть (2m − 2) делится на 3 при четном m, тогда , числа 2 и 3 взаимнопростые, следовательно, () должно делится на 3, т.е. =3q  , но , a , т.е. получили, что , а это не верно. Следовательно, наше предположение не верно и 2m − 2 не делится на 3 при четном m.

Таким образом, имеем бесконечно много решений уравнения J(n) = , и первые такие:

m

k

N= 2m + k

J(n) =2k+1=

n (двоичное)

1

0

2

1

10

3

2

10

5

1010

5

10

42

21

101010

7

42

170

85

10101010


Правый крайний столбец содержит двоичные числа, циклический сдвиг которых на одно позицию влево дает тот же самый результат, что и обычный сдвиг на одну позицию вправо (деление пополам).

Далее обобщим J - функцию, т.е. рассмотрим рекуррентность схожую с (7), но с другими константами: α, β и γ; найдем решение в замкнутой форме.

                           f(1) = α,

                        f(2n) = 2f(n) + β                 при n ≥ 1,                             (10)

                        f(2n + 1) = 2f(n) + γ           при n ≥ 1.

Составим таблицу для малых значений n:

Анализируя таблицу можно сделать предположение, что коэффициенты при α равны наибольшим степеням 2, не превосходящим n; между последовательностями 2 коэффициенты при β уменьшаются на 1 вплоть до 0, а при γ увеличиваются на 1, начиная с 0. Если выразить f(n) в виде:

f(n) = A(n)∙α + B(n)∙β + C(n)∙γ                   (11)

то, по-видимому,

A(n) = 2m ,

B(n) = 2m −1−k,                         (12)

                                       С(n) = k.

Здесь n = 2m + k       и      0 ≤ k < 2m            при n ≥ 1.

Докажем соотношения (11) и (12).

Докажем (11) методом математической индукции по числу n и при этом будем полагать, что (12) выполняется.

1) База:   n=1=20+0 (m=k=0),   f(1)=A(1)∙α+B(1)∙β+C(1)∙γ= =20∙α+(20−1−0)∙β+0∙γ = α  (верно);

2) Индуктивный переход: пусть верно для всех чисел t ≤ (n–1) , т.е. выполняется равенство f(t) = A(t)∙α + B(t)∙β + C(t)∙γ. Докажем для t=n:

a) если n – четное, тогда k тоже четное, т.е. k = 2t, и f(n) = f(2m+2t) = =f(2(2m-1 + t)) 2∙f(2m-1 + t)+β 2∙(A(2m-1 + t)∙α + B(2m-1 + t)∙β + C(2m-1 + +t)∙γ) + β  2(2m-1∙α + (2m-1−1−t)∙β + t∙γ) + β = 2m∙α + (2m−1−2t)∙β + 2t∙γ = 2m∙α+ + (2m−1−k)∙β + k∙γ = A(n)∙α + B(n)∙β + C(n)∙γ;

b) если n - нечетное, тогда k тоже нечетно, т.е. k=2t+1, и f(n) = =f(2m+2t+1) = f(2(2m-1 + t)+1) 2∙f(2m-1 + t)+ γ 2∙(A(2m-1 + t)∙α + B(2m-1 + +t)∙β + C(2m-1 + t)∙γ) + γ  2(2m-1∙α + (2m-1−1−t)∙β + t∙γ) + γ = 2m∙α + +(2m−1−(2t+1))∙β + (2t+1)∙γ = 2m∙α+ + (2m−1−k)∙β + k∙γ = A(n)∙α + B(n)∙β + C(n)∙γ.

Из пунктов 1 и 2 следует: для n ≥ 1      f(n) = A(n)∙α + B(n)∙β + C(n)∙γ.

Теперь докажем (12) в предположении, что (11) выполняется.

Если n - четное, тогда по соотношению (10) f(2n) = 2f(n) + β. Подставляя в данное равенство соотношение (11) получим:

A(2n)∙α + B(2n)∙β + C(2n)∙γ = 2(A(n)∙α + B(n)∙β + C(n)∙γ) + β

(A(2n) − 2A(n))∙α + (B(2n) − 2B(n)−1)∙β + (C(2n) − 2C(n))∙γ = 0

Теперь подставим соотношение (12) в данное равенство и посмотрим, будет ли оно выполнятся: т.к. n = 2m + k => 2n = 2m+1+2k, тогда A(2n) = 2m+1 , B(2n)=2m+1−1−2k, С(n)=2k. Подставляем: (2m+1 −2∙2m)∙α + +(2m+1−1−2k−2(2m−1−k)−1)∙β + (2k −2k)∙γ = 0  0∙α + 0∙β + 0∙γ = 0, получили 0=0 (верно);

Если n - нечетное, тогда по соотношению (10) f(2n+1) = 2f(n) + γ. Снова подставляя в данное равенство соотношение (11) получим:

A(2n+1)∙α + B(2n+1)∙β + C(2n+1)∙γ = 2(A(n)∙α + B(n)∙β + C(n)∙γ) + γ

(A(2n+1) − 2A(n))∙α + (B(2n+1) − 2B(n))∙β + (C(2n+1) − 2C(n)−1)∙γ = 0

Теперь подставим соотношение (12) в данное равенство и посмотрим, будет ли оно выполнятся: n = 2m + k => 2n+1 = 2m+1+2k+1, тогда A(2n+1) = 2m+1 , B(2n+1) = 2m+1 −1−(2k+1),       С(n+1) = 2k+1. Подставляем : (2m+1 −2∙2m)∙α + +(2m+1−2−2k−2(2m−1−k))∙β + (2k+1 −2k−1)∙γ=0  0∙α + 0∙β + 0∙γ = 0, получили 0=0 (верно).

Таким образом, мы показали, что соотношения (11) и (12) верные.

Выше было показано, что J – рекуррентность имеет решение в двоичной записи: J((bm bm-1 … b1 b0)2) = (bm-1 … b1 b0 bm)2,   где bm = 1. Можно показать, что и обобщенная рекуррентность (10) имеет похожее решение.

Запишем соотношение (10) следующим образом:

(15)

 
               f(1) = α,

              f(2n + j) = 2f(n) + βj          при j = 0, 1     и     n ≥ 1,

если положить β0 = β и β1 = γ. Тогда:

f((bm bm-1 … b1 b0)2) = 2f((bm bm-1 … b1)2) + βb = 4f((bmbm-1…b2)2)+2βb+βb= =…=2mf((bm)2)+2m-1βb+ … + 2βb+βb= 2m α + 2m-1βb+ … + 2βb+βb.

Если мы расширим систему счисления с основанием 2 таким образом, что в ней допустимы произвольные числа, а не только 0 и 1, тогда предыдущий вывод означает, что

             f((bm bm-1 … b1 b0)2) = (α βb βb …  βb βb)2                   (16)

Итак, изменение системы счисления привело нас к компактному решению (16) обобщенной рекуррентности (15).

























Глава 2

Решение задач

Задача 1. То, что все лошади одной масти, можно доказать индукцией по числу лошадей в определенном табуне. Вот так:

«Если существует только одна лошадь, то она своей масти, так что база индукции тривиальна. Для индуктивного перехода предположим, что существует n лошадей (с номерами от 1 до n). По индуктивному предположению лошади с номерами от 1 до n−1 одинаковой масти, и, аналогично, лошади с номерами от 2 до n имеют одинаковую масть. Но лошади посередине с номерами от 2 до n−1 не могут изменять масть в зависимости от того, как они сгруппированы, - это лошади, а не хамелеоны. Поэтому в силу транзитивности лошади с номерами от 1 до n также должны быть одинаковой масти. Таким образом, все n лошадей одинаковой масти. Что и требовалось доказать».

Есть ли ошибка в приведенном рассуждении и, какая именно?

Решение. Ошибка в данном рассуждении есть, и она заключается в доказательстве по индуктивному предположению. Для доказательства того, что n лошадей имеют одинаковою масть, используется пересечение двух множеств от 1 до n−1 и от 2 до n, но для n = 2 этого пересечения нет. Поэтому, если есть две лошади, имеющие разную масть, то утверждение неверно. Если же любые две лошади имеют одинаковую масть, то доказательство будет верным для любого n.

Страницы: 1, 2, 3, 4