бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Психолого-педагогічні аспекти комп’ютерного моделювання при вивченні розділу "Геометричної оптики" бесплатно рефераты

Інші приклади ідеалізації в геометричній оптиці – поняття «світлова точка», «точкове джерело світла». Точка не має розмірів, у той час як будь-яке джерело світла має кінцеві розміри. Але якщо розміри джерела світла порівняно невеликі й він розташований досить далеко від приладу, що перетворить світловий пучок, то таке джерело можна вважати точковим.

При вивченні побудови зображення предмета в плоскому дзеркалі в учнів формується поняття «уявне зображення точки (предмета)», а при вивченні лінз – «дійсне зображення точки (предмета)». Тут треба враховувати, що школярі до цього часу ще не знають ролі ока в утворенні зображень, а дана обставина досить істотно для неформального засвоєння названих понять. Питання про напрямок, у якому ми бачимо зображення, і про його місце взагалі важкий для розуміння. Уявне зображення – одне з найбільш складних понять роздягнуте в оптиці навіть для старших класів його важко засвоїти, не простежуючи хід променів до сітківки ока.

Здатність органів зору живих істот бачити предмети тільки прямолінійно, коли від предмета світло безпосередньо попадає в наше око, ставиться до їхньої вродженої здатності, що склалася в процесі тривалого розвитку й пристосування до навколишнього середовища. Наприклад, дивлячись на плоске дзеркало, ми не дивимося на відбитий предмет, (щоперебуває перед дзеркалом), тому світло від предмета безпосередньо не попадає в око, а впливає на нього лише після відбиття від дзеркала. Тому що відбите від дзеркала світло поширюється прямолінійно, то завдяки зоровій звичці нам здається, начебто предмет ми бачимо на прямолінійному напрямку, і саме за дзеркалом, а не там, де він перебуває в дійсності. Таким чином, коли мова йде про уявне зображення, то тут відіграє роль скоріше психолого-фізіологічний фактор, чим фізичний. Фізично існує тільки дійсне зображення. Тому методично поняття «уявне зображення» ефективніше розглядати паралельно з поняттям «дійсне зображення» або після розгляду цього поняття, але показавши при цьому принципову відмінність названих зображень.

Викладають це питання на основі енергетичних уявлень. На місці виникнення дійсного зображення відбувається насправді концентрація енергії світла, що може бути виявлено фотоелементом, термометром, фотопапііром і ін. Уявне зображення не можна одержати на екрані або фоточутливій плівці. Його називають уявним, видуманим тому, що реально в даному місці простору воно не існує (його немає). У тім місці де «перебуває» це уявне зображення, енергія світла не концентрується. Це добре ілюструє відомий досвід зі скляною пластиною, поставленої вертикально, і двома вертикальними свічами, одна з яких запалена. Розташувавши останню перед дзеркалом, ставлять за ним другу свічку, незасвічену, у такім місці, щоб при спостереженні крізь скло вона здавалася палаючою. Вимірюванням доводять, що свічки виявляються розташованими на рівних відстанях від дзеркала.

Вивчення теми починають із нагадування факту прямолінійного поширення світла, котрий уже відомий учням з курсу природознавства й життєвих спостережень, пов'язаних із цим явищем (форма світлового пучка в повітрі від прожектора, кишенькового ліхтаря, пучки сонячного світла, що поширюються через щілини в пиловому повітрі затемненої кімнати і т. п.). Незважаючи на такий достаток життєвих спостережень, на уроці обов'язково потрібно використати експеримент.

На приладі по геометричній оптиці, звертають увагу школярів на те, що подібні досвіди й спостереження переконують у прямолінійному поширенні світла в однорідному середовищі.

Корисно повідомити, що про прямолінійне поширення світла писав ще засновник геометрії Евклід за 300 років до нашої ери й, імовірно, поняття про пряму лінію виникло з подання про прямолінійне поширення світла в однорідному середовищі.

Необхідно розповісти й про практичне застосування цього явища для визначення відстаней до недоступних предметів (у геодезії, військовому справі, астрономії).

З метою закріплення матеріалу й придбання практичних умінь на цьому уроці школярам пропонують короткочасну лабораторну роботу – фронтальний експеримент зі шпильками по «провешиванию прямій лінії» (мал. 2.1.3.). Окремим учням можна рекомендувати виготовити вдома камеру-обскуру (мал. 2.1.4.), а на уроці розповісти про роботу з нею.



Мал. 2.1.4.


Один з наслідків прямолінійного поширення світла в однорідному середовищі – утворення тіні й півтіні й зокрема, сонячне й місячне затьмарення. Причини затьмарень уже з'ясовували в курсах природознавства й географії, тому, опираючись на попередні знання учнів, можна різноманітити методи роботи. На уроках, де розглядається даний матеріал, можна заслухати доповіді й повідомлення учнів, супроводжувані демонстрацією досвідів з таблицями, діапозитивами. Звертають увагу учнів на те, що із затьмареннями в минулі часи, було зв'язано багато марновірств, але сучасна наука дозволяє з великою точністю пророчити час їхнього настання. Корисно запропонувати учнем домашні експериментальні завдання по дослідженню розміру тіні (у порівнянні із предметом) і по визначенню розміру предмета, по його тіні.



Мал. 2.1.5.


Приступаючи до вивчення законів відбивання світла, доцільно насамперед показати явища відбивання й заломлення світла на границі двох прозорих середовищ саме так, як вони відбуваються в дійсності (тобто одночасно). При демонстрації відповідних досвідів з оптичною шайбою (мал. 2.1.5.) або із прямокутною посудиною з водяним розчином флюоресцина (Мал. 2.1.6, а) звертають увагу учнів на те, що при падінні пучка світла на границю двох середовищ (повітря – скло або повітря – вода) пучок роздвоюється: одна його частина повертається в перше середовище (це явище називають відбиванням світла), а інша проникає в друге середовище, змінивши свій напрямок (заломлення світла). Пояснення супроводжують малюнком, на якому вказують назви променів і кутів і їхні літерні позначення, підкреслюють, що на малюнку кожний пучок світла представлений його центральним променем (мал. 2.1.6, б).


Мал. 2.1.6.


При вивченні законів відбивання світла зі школярами розбирають наступні питання: «У якій площині лежить відбитий промінь?», «У якому напрямку треба шукати відбитий промінь у цій площині?», «Як співвідносяться між собою кути падіння й відбивання?» – і на основі аналізу результатів експерименту із оптичною шайбою роблять висновок.

Урок по вивченню закону відбивання можна побудувати й таким чином, що основний висновок (рівність кутів падіння й відбивання) учні одержують повністю самостійно, у процесі виконання лабораторного експерименту.

Після встановлення закону відбивання з'ясовують відмінність дзеркального й розсіяного відбивання світла. Зробити це можна в процесі самостійної роботи з підручником. На початку уроку показують наступні демонстрації: направивши кілька паралельних пучків світла на плоске дзеркало, укріплене на оптичній шайбі, з'ясовують, що вони залишаються паралельними й після відбивання. Далі в добре затемненому класі перед проекційним апаратом встановлюють плоске дзеркало так, щоб світло після відбивання потрапить на стелю або на стіну класу. На стелі одержують різко обкреслену світлу пляму. Інша частина стелі залишається темною, у класі світліше не стає. Звернувши на цю увагу учнів, задають питання: «Чи відбивається світло від вати?» Замінивши дзеркало ватою, спостерігають, що значна частина стелі освітлена й у класі стало світліше. Після цього учням пропонують розглянути малюнки на екрані ЕОМ, де показаний що паралельний світловий пучок відбивається від дзеркальної поверхні у вигляді паралельного ж пучка, так само строго спрямованого (мал. 2.1.7, а), а шорсткувата поверхня відбиває падаючий на неї світло в усіх напрямках (мал. 2.1.7, б). У процесі колективного обговорення з'ясовують різницю між дзеркальним і розсіяним відбиттям і яке значення має розсіяне відбиття в нашому житті. Навколишні нас предмети видні тому, що вони розсіюють світло, що йде від Сонця й штучних джерел світла.



При вивченні дзеркального відбивання показують, що плоске дзеркало тільки змінює напрямок ходу променів світла, але не може перетворювати пучки світла. У даному місці курсу фіксують увага школярів саме на цьому, а плоскі дзеркала розглядають як пристосування, що служать для зміни напрямку світлового пучка світла. Цей матеріал закріплюють системою вправ по конкретній зміні напрямку променя дзеркалом (паралельний пучок світла піднімають або опускають на яку-небудь задану висоту, змінюють горизонтальний напрямок пучка світла на вертикальне й т. п.). Показують, що зображення в плоскому дзеркалі перебуває за дзеркалом і на тій же відстані (мал. 2.1.2.).

Вивчення явища переломлення світла починають за допомогою ЕОМ із повторення досвідів по одночасному відбиттю й заломленню світла на границі двох прозорих середовищ. Нагадують, який промінь називається падаючим, а який – заломленим, показують і позначають відповідні кути, повторюють закони відбивання. Потім експериментально з оптичною шайбою (заломлення світла при проходженні через скляний напівциліндр) показують, що заломлений промінь лежить у тій же площині, що й падаючий промінь. Звертають увагу на те, що кут заломлення світла в склі змінюється при зміні кута падіння, зв'язок між цими кутами більш складний, чим при відбиванні світла.

Використовуючи більш складну установку (мал. 2.1.6, а), на якій можна спостерігати заломлення світлового пучка як при переході з повітря у воду, так і з води в повітря, звертають увагу школярів на наступну закономірність: при переході світла з повітря у воду кут заломлення менше кута падіння. При переході світла з води в повітря кут заломлення більше кута падіння. Креслення на дошці (мал. 2.1.6, б) допомагає зрозуміти спостережуване (KN – границя повітря й води, АO – падаючий промінь, OB – заломлений промінь у воді (він же падає на дзеркало, що лежить у воді), ВК – відбитий промінь від дзеркала (він падає на границю води й повітря), KD – заломлений промінь при виході в повітря; α – кут падіння при переході з повітря у воду, β – кут заломлення; α1 і β1 відповідно кути падіння й заломлення при переході променя з води в повітря).

Спостереження повторюють для середовищ повітря – скло на досвіді з оптичною шайбою. Зробивши відповідні креслення й порівнявши для різних середовищ кути заломлення при рівних кутах падіння, вводять поняття про середовища оптично більш (менш) щільних.

У цьому місці шкільного курсу, використовуючи ці ж установки розповідають школярам і про оборотність світлових променів.

Тому що при розгляді явища заломлення вводять показник заломлення, то вправи проводять не тільки якісно. Велику увагу повинно бути приділене поясненню явищ, відомих учням з життєвого досвіду, наприклад, чому предмети, частково занурені у воду, здаються зламаними в поверхні води, чому дно ріки, предмети у воді здаються вище, ніж це є в дійсності, і т. п.

Використовуючи прості устаткування (склянка з водою, олівець, колба з водою), можна організувати фронтальні лабораторні спостереження учнями уявного підняття предмета при його зануренні у воду.

Лінзи в базовій школі розглядають не тільки експериментально, як наслідок явища заломлення. Учнів на досвіді знайомлять із властивостями лінз перетворювати пучки світла й давати дійсне зображення предметів. Вводять поняття про фокусні відстані F оптичній силі лінз 1/F. Формулу лінзи вивчають тільки із сильними учнями.

Фронтальну лабораторну роботу «Одержання зображення за допомогою лінзи» проводять у сполученні з демонстраційним експериментом, що дозволяє ввести поняття «фокусна відстань» і «оптична сила».

У центрі уваги повинні бути дві демонстрації: 1) паралельний пучок променів (мал. 2.1.8.) збирається в одній точці (фокусі лінзи) і 2) промені, що йдуть через фокус, після заломлення йдуть паралельно оптичної осі (мал. 2.1.9.). Знання ходу цих двох променів дає можливість показати принцип побудови зображення в лінзах і переконати школярів у залежності характеру зображення від відстані предмета до лінзи і її фокусної відстані. Необхідно розглянути основні випадки одержання дійсних зображень предметів при різних положеннях предмета щодо лінзи (мал. 2.1.10., а, б, в) На малюнку з екрана ЕОМ, при побудові зображення стрілки, один із променів проведений паралельно головної оптичної осі, інший – через її оптичний центр.


 

Мал. 2.1.8. Мал. 2.1.9.


Далі розглядають будову ока й фотоапарата, за допомогою комп'ютера. Цей матеріал відіграє істотну роль як у здійсненні зв'язку викладання з життям і розширення політехнічного кругозору учнів, так і в узагальненні й систематизації їхніх знань по всьому вивченому матеріалі.

Око надзвичайно складна оптична система, по принципу дії нагадує фотоапарат. Тому після порівняння ходу променів (мал. 2.1.11. і 2.1.12.) корисно запропонувати, учням скласти таблицю, у якій співставляються оптичні системи фотоапарата й ока (характер зображення, як здійснюється наведення на різкість, роль діафрагми – зіниці, об'єктива – кришталика й т. п.).


Мал. 2.1.10.


Через обмеженість часу, що відводить на вивчення теми «Світлові явища», різні випадки більш складних побудов зображень (за допомогою побічних осей), а також визначення області бачення зображень і т. п., можна розглянути тільки в гуртковій роботі або на факультативних заняттях.

Програма базової школи припускає вивчення ще наступних питань:

– короткозорість і далекозорість;

– окуляри;

– кут зору і його збільшення;

– лупа;

-   мікроскоп;

-   телескоп;

-   дисперсія й спектральне розкладання;

-   проекційний апарат.

На цих питаннях зупиняємося, тому що зв'язок з життям дуже цікавить учнів. І тим самим, ще раз підкреслюємо важливість вивчення оптики.


Мал. 2.1.11. Мал. 2.1.12.


На завершення варто розповісти учням про значення оптичних приладів у промисловості, у наукових дослідженнях, у побуті. Важливо показати роль оптичних приладів у пізнанні світу. Наприклад, фотографування зворотної сторони Місяця, невидимої із Землі, і т. п. Матеріал, досліджуваний у класі, дає основу для проведення багатьох цікавих позакласних занять за наступними темами: «Історія техніки освітлення», «Сонячне випромінювання – джерело життя на Землі» і т.д.

По матеріалу теми можна з учнями провести екскурсію. [13]


2.2 Організація навчального процесу при поєднанні традиційних та НІТН


Засоби навчання відіграють в педагогічній діяльності таку ж саму роль, як і знаряддя праці в будь-якому виробничому процесі. Від рівня їх розвитку і раціональної організації застосування в значній мірі залежить ефективність та кінцевий результат навчання. Не випадково деякі фахівці вважають, що впровадження техніки в практику навчання – подія така ж важлива, як у свій час було створення перших шкільних підручників.

Широке проникнення в навчальний процес сучасних технічних засобів навчання і електронних обчислювальних машин є характерним фактором розвитку вищої освіти. Технічне оснащення вузівського навчального процесу – це не дань моді, а об'єктивна необхідність, яка обумовлена всім ходом суспільно-історичного розвитку.

Певна річ, що сучасні ТЗН – це не панацея, яка покликана допомогти школі загалом вирішити всі поставлені перед нею завдання. Але те, що ми вже знаємо про дидактичні можливості ТЗН, дає нам право стверджувати, що вони можуть зробити суттєвий внесок у вдосконалення навчально-виховного процесу у вищій школі.

Зміни в структурі навчального процесу не слід розглядати як самоціль: з'явився технічний засіб – міняй схему навчання, що склалася, щоб цей засіб вписався в нову схему. Однак модернізація дидактичної системи вищої школи з урахуванням нових завдань підготовки спеціалістів і проникнення новітніх ТЗН в ВНЗ – це єдиний об'єктивний процес, викликаний усім ходом розвитку суспільства.

Академік В.М. Глушков писав, що» навіть в майбутньому ЕОМ не зможуть повністю замінити вчителя». Що стосується часткової комп'ютеризації навчального процесу, то ця можливість в силу наявності великої наукової, матеріально-технічної, а також морально-психологічної бази не потребує корінної перебудови умов, що склалися, а отже стала реальною і конкретною. Більше того, впровадження ЕОМ в навчання стало необхідністю, оскільки метою його є не оголошувати відому і однакову для всіх схему знань, а розвивати різноманітність, своєрідність, індивідуальну неповторність особистості.

Т.В. Колесник [14] зазначає, що навчання за допомогою ЕОМ – це принципово новий тип навчального процесу, що вимагає нових форм і методів навчальної та навчаючої діяльності. Використання ЕОМ змінює фукції викладача: він повинен заздалегідь визначити шляхи та розробити алгоритми оптимального керівництва всім навчальним процесом й окремим заняттям у тому числі. Істотною дидактичною особливістю навчання за допомогою ЕОМ є встановлення безпосередніх діалогів між студентом і машиною або діалогічного трикутника – студент-комп'ютер-викладач.

Такі діалоги допомагають розібратися у всіх труднощах, що виникають у процесі вивчення предмета при самостійному розв'язанні завдань, а викладачеві – спостерігати та контролювати якісний стан навчання.

Чи може техніка замінити викладача? Справа в тому, зазначає В.М. Кузнєцов [17], що розуміти під словом «замінити». Жодна машина не може взяти на себе роль педагога як суб'єкта педагогічного впливу, одна із найважливіших функцій якого – керувати пізнавальною діяльністю того, хто навчається, у взаємо-опосередкованому процесі викладання – навчання. Але технічний пристрій, виступаючи засобом навчання в руках педагога, може виконувати низку його функцій, передаючи навчальну інформацію або контролюючи її засвоєння. Час, що звільнився, викладач витрачає на здійснення таких функцій педагогічної діяльності, які не під силу електроніці.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8