бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Прикладные аспекты темы "Скорость химической реакции и катализ" на уроках химии в средней школе бесплатно рефераты

Одновременно с увеличением объема производства серной кислоты расширяется ассортимент продукции сернокислотных заводов, организуется выпуск особо чистой кислоты, 100% SO2, высококачественного олеума и кислоты, а также увеличивается производство новых продуктов на основе SO2. Кроме того, выпускают также более чистую контактную кислоту, чистый олеум, химически чистую и реактивную серную кислоту.

Широко применяется обжиг колчедана в кипящем слое и сжигание серы в циклонной печи, увеличивается использование тепла, выделяющегося на различных стадиях производства серной кислоты. Повышается производительность башенных сернокислотных систем в результате поддержания оптимального технологического режима; интенсивность башенных систем достигает 250 кг/м3 в сутки. Освоен контактно-башенный процесс производства, при котором расход HNO3 составляет 6–7 кг на 1 тонну H2SO4.

В контактном методе производства серной кислоты окисление диоксида серы в триоксид осуществляется на твердых контактных массах. Благодаря усовершенствованию контактного способа производства, себестоимость более чистой и высококонцентрированной контактной серной кислоты лишь незначительно выше, чем башенной. В настоящее время свыше 90% всей кислоты производится контактным способом.

В качестве катализаторов контактного процесса применяется термически стойкая ванадиевая контактная масса (в виде гранул и колец) с пониженной температурой зажигания. Проведены работы по освоению процесса окисления SO2 в кипящем слое катализатора. Важным усовершенствованием является двойное контактирование, при котором обеспечивается высокая степень окисления SO2 на катализаторе (до 99,8%) и потому исключается необходимость в дополнительной санитарной очистке отходящих газов.


Схема 1. Применение серной кислоты



























Внедряется процесс конденсации H2SO4, заменяющий абсорбцию серного ангидрида. Также для производства серной кислоты используют ангидрид или безводный сульфат кальция CaSO4, гипс или двуводную соль CaSO4 ×2H2O и фосфогипс, представляющий собой отход производства концентрированных фосфорных удобрений (смесь гипса, соединений фтора, окислов фосфора, SO2 и других примесей).

В нитрозном способе катализатором служат оксиды азота. Окисление SO2 происходит в основном в жидкой фазе и осуществляется в башнях с насадкой. Поэтому нитрозный способ называют башенным. Обжиговый газ обрабатывается серной кислотой, в которой растворены окислы азота. Сернистый ангидрид обжигового газа поглощается нитрозой, и затем окисляется окислами азота по реакции: SO2 + N2O3 + H2O = H2SO4 + 2NO. Образующийся NO плохо растворим в нитрозе и выделяется, а затем частично окисляется кислородом до NO2. Смесь NO и NO2 вновь поглощается H2SO4.

Промышленность выпускает три вида товарной серной кислоты: башенная кислота (С = 75%, tкрист= -29,5 °С); контактная кислота (С = 92,5%, tкрист= -22,0 °С); Олеум (С = 20% своб. SO3, tкрист= +2 °С) [7, 8].


2.2 Исходное сырье


Традиционными источниками являются сера и железный (серный) колчедан. Значительное место в сырьевом балансе занимают отходящие газы цветной металлургии, содержащие диоксид серы.

В целях защиты окружающей среды во всем мире принимаются меры по использованию отходов промышленности, содержащих серу. Из-за низкой концентрации SO2 в отходящих газах тепловых электростанций и металлургических заводов их переработка пока еще не всегда осуществима [7].

2.3 Характеристика целевого продукта


Серная кислота может существовать как самостоятельное химическое соединение H2SO4, а также в виде соединений с водой H2SO4×H2O, H2SO4×2H2O, H2SO4×4H2O и с триоксидом серы H2SO4×SO3, H2SO4×2SO3. В технике серной кислотой называют и безводную H2SO4 и ее водные растворы (это смесь H2O, SO3 и соединений H2SO4×nH2O) и растворы триоксида серы в безводной H2SO4 – олеум (смесь H2SO4 и соединений H2SO4×nSO3).

Безводная серная кислота – тяжелая маслянистая бесцветная жидкость, смешивающаяся с водой и триоксидом серы в любом соотношении. Физические свойства серной кислоты, такие, как плотность, температура кристаллизации, температура кипения, зависят от ее состава.

Безводная 100%-ная кислота имеет сравнительно высокую температуру кристаллизации 10,7 °С. Чтобы уменьшить возможность замерзания товарного продукта при перевозке и хранении, концентрацию технической серной кислоты выбирают такой, чтобы она имела низкую температуру кристаллизации. Промышленность выпускает 3 вида товарной серной кислоты.



Концентрация

Температура кристаллизации, °С

Башенная кислота

75%

-29 °C

Контактная кислота

92,5%

-22 °C

Олеум

20% своб.SO3

+2 °C


Серная кислота и вода образуют азеотропную смесь состава 98,3% H2SO4 и 1,7% H2O с максимальной температурой кипения (336,5°С). Состав находящихся в равновесии жидкой и паровой фаз для кислоты азеотропной концентрации одинаков; у более разбавленных растворов кислоты в паровой фазе преобладают пары воды, в паровой фазе над олеумом высока равновесная концентрация SO3.

Серная кислота весьма активна. Она растворяет оксиды металлов и большинство чистых металлов, вытесняет при повышенной температуре все другие кислоты из солей. Особенно жадно серная кислота соединяется с водой благодаря способности давать гидраты. Она отнимает воду у других кислот, от кристаллогидратов солей и даже кислородных производных углеводородов, которые содержат не воду как таковую, а водород и кислород в сочетании Н : О = 2. Дерево и другие растительные и животные ткани, содержащие целлюлозу (С6Н10О5), крахмал и сахар, разрушаются в концентрированной серной кислоте; вода связывается с кислотой и от ткани остается мелкодисперсный углерод. В разбавленной кислоте целлюлоза и крахмал распадаются с образованием сахаров. При попадании на кожу вызывает ожоги [7-12].


2.4 Химическая схема процесса

 

1.Сжигание серы

 При получении обжигового газа путем сжигания серы отпадает необходимость очистки от примесей. Стадия подготовки будет включать лишь осушку газа и утилизацию кислоты. При сжигании серы протекает необратимая экзотермическая реакция:


S + O2 = SO2 (1)


с выделением очень большого количества теплоты: изменение Н=-362,4 кДж/моль, или в пересчете на единицу массы 362,4/32 = 11,325 кДж/т = 11325 кДж/кг S.

Расплавленная жидкая сера, подаваемая на сжигание, испаряется (кипит) при температуре 444,6 °С; теплота испарения составляет 288 кДж/кг. Теплоты реакции горения серы вполне достаточно для испарения исходного сырья, поэтому взаимодействие серы и кислорода происходит в газовой фазе.

Серу предварительно расплавляют (для этого можно использовать водяной пар, полученный при утилизации теплоты основной реакции горения серы). Так как температура плавления серы сравнительно низка, то путем отстаивания и последующей фильтрации от серы легко отделить механические примеси, не перешедшие в жидкую фазу, и получить исходное сырье достаточной степени чистоты. Для сжигания расплавленной серы используют два типа печей – форсуночные и циклонные. В них необходимо предусмотреть распыление жидкой серы для ее быстрого испарения и обеспечения надежного контакта с воздухом во всех частях аппарата (рис. 1).

Обжиговый газ поступает в котел-утилизатор и далее в последующие аппараты. Если воздух берут в стехиометрическом количестве, т.е. на каждый моль серы 1 моль кислорода, то при полном сгорании серы концентрация будет равна объемной доле кислорода в воздухе С(SO2max) = 21%. Однако обычно воздух берут в избытке, так как в противном случае в печи будет слишком высокая температура.



При адиабатическом сжигании серы температура обжига для реакционной смеси стехиометрического состава составит ~ 1500 °С. В практических условиях выше 1300 °С разрушается футеровка печи и газоходов. Обычно при сжигании серы получают обжиговый газ, содержащий 13 – 14% SO2.

2. Контактное окисление SO2 в SO3

Контактное окисление диоксида серы является типичным примером гетерогенного окислительного экзотермического катализа.

Реакция окисления диоксида серы


SO2 + 0,5 O2 = SO3 (2)


характеризуется очень высоким значением энергии активации и поэтому практическое ее осуществление возможно лишь в присутствии катализатора.

В промышленности основным катализатором окисления SO2 является катализатор на основе оксида ванадия V2O5 (ванадиевая контактная масса). Каталитическую активность в этой реакции проявляют и другие соединения, но платиновые катализаторы чувствительны даже к следам As, Se, Cl2 b др.

Скорость реакции повышается с ростом концентрации кислорода, поэтому процесс в промышленности проводят при его избытке.

Так как реакция окисления SO2 относится к типу экзотермических, температурный режим ее проведения должен приближаться к линии оптимальных температур. Нижним температурным пределом является температура зажигания ванадиевых катализаторов, составляющая в зависимости от вида катализатора и состава газа 400 – 440°С. Верхний температурный предел составляет 600 – 650°С и определяется тем, что выше этих температур происходит перестройка структуры катализатора, и он теряет свою активность.

В диапазоне 400 – 600°С процесс стремятся провести так, чтобы по мере увеличения степени превращения температура уменьшалась.

Чаще всего в промышленности используют полочные контактные аппараты с наружным теплообменом (рис. 1). Схема теплообмена предполагает максимальное использование теплоты реакции для подогрева исходного газа и одновременное охлаждение газа между полками. Одна из важнейших задач, стоящих перед сернокислотной промышленностью, - увеличение степени превращения диоксида серы и снижение его выбросов в атмосферу. Эта задача может быть решена несколькими методами.

Один из наиболее рациональных методов решения этой задачи, - метод двойного контактирования и двойной абсорбции (ДКДА). Для смещения равновесия вправо и увеличения выхода процесса, а также для увеличения скорости процесса процесс проводят по этому методу. Реакционную смесь, в которой степень превращения SO2 составляет 90 – 95%, охлаждают и направляют в промежуточный абсорбер для выделения SO3. В оставшемся реакционном газе соотношение O2:SO2 существенно повышается, что приводит к смещению равновесия реакции вправо. Вновь нагретый реакционный газ снова подают в контактный аппарат, где на одном-двух слоях катализатора достигают 95% степени превращения оставшегося SO2. Суммарная степень превращения SO2 составляет в таком процессе 99,5% - 99,8 %.

3. Абсорбция триоксида серы

Последняя стадия производства серной кислоты контактным способом – абсорбция SO3 из газовой смеси и превращение его в серную кислоту.


nSO3 + H2O = H2SO4 + (n-1)SO3 + Q                 (3)


если n > 1, то получается олеум (раствор SO3 в H2SO4)

если n = 1 , то получается моногидрат (98,3% H2SO4)

если n < 1, то получается разбавленная серная кислота

При выборе абсорбента и условий проведения стадии абсорбции необходимо обеспечить почти 100%-ное извлечение SO3 из газовой фазы. В качестве абсорбента нельзя использовать такие растворы, над поверхностью которых велико парциальное давление паров воды. В этом случае еще не растворенные молекулы SO3 будут реагировать с молекулами воды в газовой фазе с образованием паров серной кислоты и быстро конденсироваться в объеме с образованием мельчайших капель серной кислоты, диспергированных в инертной газовой среде, т.е. с образованием сернокислотного тумана:


SO3(г) + H2O(г) ® H2SO4(г) ® H2SO4(туман) ; Q > 0


Туман плохо улавливается в обычной абсорбционной аппаратуре и в основном уносится с отходящими газами в атмосферу. Оптимальным абсорбентом является 98,3%-ная серная кислота (моногидрат). Действительно, над этой кислотой практически нет ни паров воды, ни паров SO3. Протекающий при этом процесс можно условно описать уравнением реакции:


SO3 + nH2SO4 + H2O = (n+1) H2SO4


Для обеспечения высокой степени поглощения следует поддерживать в абсорбере концентрацию серной кислоты, близкую к 98,3%, а температуру ниже 100°С. Однако в процессе абсорбции SO3 происходит закрепление кислоты и в силу экзотермичности реакции увеличивается температура. Поэтому абсорбцию ведут так, чтобы концентрация H2SO4 при однократном прохождении абсорбера повышалась только на 1-1,5%, закрепившуюся серную кислоту разбавляют в сборнике до 98,3%, охлаждают в наружном холодильнике и вновь подают на абсорбцию, обеспечивая циркуляцию (рис. 2) [7 - 12].

 

Глава 3. Тесты и задачи прикладного характера

 

3.1 Тесты типа «А»


1. Равновесие реакции 2Н2S (г.) + 3О2 (г.) = 2Н2О (г.) + 2SO2 (г.) при повышении давления смещается:

а) вправо;                              +

б) влево;

в) давление не влияет на равновесие.

2. Вещество, ускоряющее ход реакции, но при этом не расходующееся:

а) ингибитор;                                 

б) катализатор;                      +

в) индикатор.

3. Повышение температуры в реакции 2Н2 + О2 = 2Н2О + Q кДж сказывается следующим образом:

а) не оказывает влияния;

б) смещает равновесие вправо;

в) смещает равновесие влево.        +

4. Натрий энергичнее реагирует с водой, чем железо, поскольку:

а) натрий – газообразный элемент;

б) натрий – катализатор этой реакции;

в) натрий – ингибитор этой реакции;

г) натрий – щелочной металл.                +

5. Реакцию, протекающую с поглощением тепла, называют:

экзотермической;                            3) реакцией разложения;

реакцией соединения;                     4) эндотермической.             +

6. Реакцию, уравнение которой 2H2O + 2Na = 2NaOH + H2­ + Q, относят к реакциям:

замещения, экзотермическим;                 +

разложения, экзотермическим;

присоединения, эндотермическим;

обмена, эндотермическим.

7. Реакцию, уравнение которой 3H2+N2 Û 2NH3 + Q, относят к реакциям:

1) обратимым, экзотермическим;           +

2) необратимым, экзотермическим;

3) обратимым, эндотермическим;

4) необратимым, эндотермическим.

8. В ходе химических реакций тепловая энергия реакционной системы:

не изменяется;

поглощается;

выделяется;

может поглощаться или выделяться.               +

9. С наибольшей скоростью при комнатной температуре протекает реакция взаимодействия:

углерода с кислородом;

железа с раствором уксусной кислоты;

железа с соляной кислотой;

растворов гидроксида натрия и серной кислоты.    +

10. Какое из перечисленных условий не повлияет на смещение равновесия в системе: 2SO2 + O2 Û 2SО3 + Q?

введение катализатора;                  +

повышение давления;

повышение концентрации кислорода;

повышение температуры

11 – 12. Реакция, сопровождающаяся 11. выделением теплоты 12. поглощением теплоты называется

обратимой                                      3) прямой

эндотермической         (12+)          4) экзотермической               (11+)

13. При протекании химической реакции теплота

поглощается или выделяется                  +

обязательно поглощается

обязательно выделяется

условие недостаточно для однозначного ответа

14 - 15. Скорость реакции А(г) + В(г) ® ... увеличивается при

14.    1) понижении концентрации А

повышении концентрации В +

охлаждении

понижении давления

15. 1) нагревании                                     3) добавлении инертного газа

2) повышение давления +              4) охлаждении

16. Состояние химического равновесия характеризуется

изменением химической природы продуктов

постоянством концентраций веществ               +

повышением температуры

понижением давления

17. Состояние химического равновесия означает, что

все реагенты исчезли, полностью образовались продукты

все реагенты сохранились, полностью образовались продукты

часть реагентов исчезла, частично образовались продукты               +

Страницы: 1, 2, 3, 4