бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Оператор сдвига в гильбертовом пространстве бесплатно рефераты

Оператор сдвига в гильбертовом пространстве


Оператор сдвига

Содержание

1.    Введение

Часть 1. Оператор сдвига в гильбертовом пространстве

§1. Основные понятия и факты теории линейных операторов

1. Определение и примеры линейных операторов

2. Ограниченность  и норма линейного оператора

3. Сумма и произведение линейных операторов. Пространство линейных непрерывных операторов

4. Обратный оператор       

5. Спектр оператора. Резольвента

§2. Унитарные операторы. Оператор сдвига

6. Взвешенные сдвиги

7. Операторы сдвига в пространстве функции на единичной окружности


Часть 2. Нестандартное расширение оператора сдвига

1. Нестандартное расширение поля действительных чисел

2. Расширение пространств  и

3. Операторы сдвига в нестандартном расширении

Заключение

Список литературы

ВВЕДЕНИЕ

Тема для написания дипломной работы  была выбрана не случайно. Теория линейных операторов – это интересная и важная область, которая позволяет не только активно применять уже имеющиеся знания по анализу, но и узнать много нового.

В данной работе рассматриваются линейные операторы одностороннего и двустороннего сдвига. Вводятся основные понятия: спектр, резольвента, спектральный радиус оператора. Рассматриваются задачи, в ходе решения которых выясняются некоторые свойства спектров операторов сдвига. Определяется класс взвешенных сдвигов, выводится соотношение для нормы и спектрального радиуса оператора взвешенного сдвига.

Известно, что если рассматривать поле действительных чисел при условии, что аксиома Архимеда не выполняется, то получим новое, расширенное поле, в котором существуют бесконечно большие и бесконечно малые элементы. На основании этого расширения можно построить весь математический анализ – нестандартный анализ.

Естественно, часть основных понятий и свойств линейных операторов было бы интересно определить и доказать и в нестандартном анализе,  что и было сделано в работе.

В частности, был установлен следующий факт: хотя стандартный оператор сдвига не имеет собственных векторов, но его нестандартное расширение имеет «почти собственные» векторы, т. е. векторы, в определенном смысле бесконечно близкие к собственным.

Часть 1. Оператор сдвига в гильбертовом пространстве

§1. Основные понятия и факты теории линейных операторов

1. Определение и примеры линейных операторов

Пусть Е и Е1 – два линейных  нормированных пространства над полем  комплексных чисел. Линейным оператором, действующим из Е в Е1 называется отображение    ( удовлетворяющее условию

 для всех .

Совокупность DA всех тех , для которых отображение А определено, называется областью определения оператора А; вообще говоря, не предполагается, что DA=E , однако мы всегда будем считать, что DA есть линейное многообразие, то есть, если  х,у DA , то и  при  любых .

Определение 1. Оператор     называется непрерывным в точке х0 DA , если для любой окрестности V точки у0=Ах0 существует такая окрестность  U точки х0 , что  АхV , как только х. Оператор А называется непрерывным, если он непрерывен в каждой точке х DA.

Поскольку Е и Е1 – нормированные пространства, то это определение равносильно следующему: оператор А называется непрерывным, если выполняется следующее условие: (  .

Примеры линейных операторов

1.                 Пусть А – линейный оператор, отображающий n-мерное пространство Rn c базисом е1, …, еn в m-мерное пространство Rm  с базисом f1, …,fm . Если х – произвольный вектор из Rn , то  и, в силу линейности оператора А .

Таким образом, оператор А задан, если известно, в какие элементы он переводит базисные векторы е1,…, еn . Рассмотрим разложение вектора Аеi по базису f1, …, fm . Имеем . Следовательно, оператор А определяется матрицей коэффициентов аij . Образ пространства Rn и Rm представляет собой линейное пространство, размерность которого равна, очевидно, рангу матрицы , т.е. во всяком случае не превосходит n (свойство ранга матрицы). Отметим, что в конечномерном пространстве всякий линейный оператор автоматически непрерывен.

2.                 Рассмотрим гильбертово пространство Н и в нем некоторое подпространство Н1 . Разложив Н в прямую сумму подпространства Н1 и его ортогонального дополнения, т.е. представив каждый элемент  в виде  ( положим Рh=h1.  Этот оператор Р естественно назвать оператором проектирования, проектирующим все пространство Н на Н1. Очевидно, что Р является линейным и непрерывным оператором.

3.                 Рассмотрим  в пространстве непрерывных функций на отрезке [a;b] с нормой  оператор, определяемый формулой

                                      ,                (1)

где k(s,t) – некоторая фиксированная непрерывная функция двух переменных. Функция  непрерывна для любой непрерывной функции , так что оператор (1) действительно переводит пространство непрерывных функций в себя. Его линейность очевидна. Можно доказать также, что он непрерывен.

Тот же оператор можно рассмотреть на множестве непрерывных функций С2[a,b] с нормой  , где он также непрерывен.

4. Один из важнейших для анализа примеров линейных операторов – оператор дифференцирования. Его можно рассматривать в пространстве  C[a,b] : Df(t) = .Этот оператор D определен не на всем пространстве непрерывных функций, а лишь на линейном многообразии функций, имеющих непрерывную производную. Оператор D линеен, но не непрерывен. Это видно, например, из того, что последовательность  сходится к 0 ( в метрике С[a,b]), а последовательность  не сходится.

Оператор дифференцирования можно рассматривать как оператор, действующий из пространства D1 непрерывно дифференцируемых функций на [a,b] с нормой   в пространство С[a,b]. В этом случае оператор D линеен и непрерывен и отображает все D1 на все С[a,b].

Рассмотрение оператора дифференцирования как оператора, действующего из  D1 в С[a,b], не вполне удобно, так как, хотя при этом мы и получаем непрерывный оператор, определенный на всем пространстве, но не к любой функции из D1 можно применять этот оператор дважды. Удобнее рассматривать оператор дифференцирования в еще более узком пространстве, чем D1 , а именно в пространстве  бесконечно дифференцируемых функций на отрезке [a; b], в котором топология задается счетной системой норм . Оператор дифференцирования переводит все это пространство в себя, и, как можно проверить, он непрерывен на этом пространстве.

2. Ограниченность  и норма линейного оператора

Определение 2. Линейный оператор, действующий из Е в Е1, называется ограниченным, если он определен на всем Е и каждое ограниченное множество переводит снова в ограниченное. Между непрерывностью и ограниченностью линейного оператора существует тесная связь, т.е. справедливы следующие утверждения:

Теорема 1. Для того, чтобы  линейный оператор    был непрерывным, необходимо и достаточно, чтобы он был ограничен.

1. Пусть оператор А неограничен. Тогда существует  МЕ – ограниченное множество, такое, что множество АМЕ1 не ограничено. Следовательно, в Е1 найдется такая окрестность нуля V, что ни одно из множеств АМ не содержится в V. Но тогда существует такая последовательность хnM , что ни один из элементов Ахn  не принадлежит V и получаем, что в Е, но  не сходится к 0 в Е; это противоречит непрерывности оператора А.

2. Если оператор  А не непрерывен в точке 0, то в Е1 существует такая  последовательность , что Ахn не стремится к 0. При этом последовательность  ограничена, а последовательность  не ограничена. Итак, если оператор А не непрерывен, то А и не ограничен. Утверждение доказано.

Если Е и Е1 – нормированные пространства, то условие ограниченности оператора А, действующего из Е в Е1, можно сформулировать так: оператор А называется ограниченным, если он переводит любой шар в ограниченное множество.

В силу линейности оператора А это условие можно сформулировать так: оператор А ограничен, если существует С=const , что для любого Е : .

Определение 3. Наименьшее из чисел С, удовлетворяющих этому неравенству, называется нормой оператора А и обозначается .

Теорема 2 [1]. Для любого ограниченного оператора А , действующего из нормированного пространства в нормированное .


3. Сумма и произведение линейных операторов. Пространство линейных непрерывных операторов

Определение 4. Пусть А и В – два линейных оператора, действующих из линейного топологического пространства Е в пространство Е1. Назовем их суммой А+В оператор С, ставящий в соответствие элементу  элемент у=Ах+Вх, .

Можно проверить, что С=А+В – линейный оператор, непрерывный, если А и В непрерывны. Область определения DC оператора С есть пересечение  областей определения операторов А и В.

Если Е и Е1 – нормированные пространства, а операторы А и В ограничены, то С тоже ограничен, причем

                       (2)

Действительно, для любых х , следовательно, выполняется неравенство (2).

Определение 5. Пусть А и В – линейные операторы, причем А действует из Е в Е1, а В действует из Е1 в Е2 . Произведением ВА операторов А и В называется оператор С, ставящий в соответствие элементу   элемент  из Е2.

Область определения DC оператора С=ВА состоит из тех хDA , для которых АхDB. Ясно , что оператор С линеен. Он непрерывен, если А и В непрерывны.

Если А и В – ограниченные операторы, действующие в нормированных пространствах, то и оператор С=ВА – ограничен, причем

                                                       (3)

Действительно, , следовательно, выполняется (3).

Сумма и произведение трех и более операторов определяются последовательно. Обе эти операции ассоциативны.

Произведение оператора А на число к (обозначается кА) определяется как оператор, который элементу х ставит в соответствие элемент кАх.

Совокупность Z(E,E1) всех непрерывных линейных операторов, определенных на всем Е и отображающих Е в Е1 ( где Е и Е1– фиксированные линейные нормированные пространства), образует, по отношению к введенным операциям сложения и умножения на число, линейное пространство. При этом Z(E, E1) – нормированное пространстово (с тем определением нормы оператора, которое было дано выше).


4. Обратный оператор       

Пусть А – линейный оператор, действующий из Е в Е1 , и DA область определения, а RA – область значений этого оператора.

Определение 6. Оператор А называется обратимым, если для любого уRA уравнение Ах=у имеет единственное решение.

Если А обратим, то любому элементу уRA можно поставить в соответствие  единственный элемент хDA , являющийся решением уравнения Ах=у. Оператор, осуществляющий это соответствие, называется обратным к А и обозначается А-1.

Теорема 3 [1]. Оператор А-1, обратный линейному оператору А, также линеен.

Доказательство.

Достаточно проверить выполнение равенства 

                       .

Положим Ах1=у1 и Ах2=у2, в силу линейности А имеем

                    (*)

По определению обратного оператора А-1у1=х1 и А-1у2=х2, умножим оба равенства соответственно на  и :

                                 .

С другой стороны из равенства (*) следует , следовательно, .

Теорема доказана.

Теорема 4 [3]. (Теорема Банаха об обратном операторе)

Пусть А – линейный ограниченный оператор, взаимно однозначно отображающий банахово пространство Е на банахово пространство Е1. Тогда обратный оператор А-1 ограничен.

Теорема 5 [3]. Пусть Е – банахово пространство, I – тождественный оператор в Е, а А – такой ограниченный линейный оператор, отображающий Е в себя, что . Тогда оператор (I-A)-1 существует, ограничен и представляется в виде .

Доказательство.

Так как     , то ряд  сходится. А так как  для всех , то ряд  также сходится. Пространство Е полно, значит, из сходимости ряда  вытекает, что сумма ряда представляет собой ограниченный линейный оператор. Для любого n имеем: , переходя к пределу и учитывая, что , получаем , следовательно .

Теорема доказана.

5. Спектр оператора. Резольвента.

Всюду, где речь идет о спектре оператора, считаем, что оператор действует в комплексном пространстве.

В теории операторов и ее применениях первостепенную роль играет понятие спектра оператора. Рассмотрим это понятие сначала применительно к операторам в конечномерном пространстве.

Пусть А – линейный оператор в n-мерном пространстве Еn . Число  называется собственным значением оператора А , если уравнение имеет ненулевые решения. Совокупность всех собственных значений называется спектром оператора А, а все остальные значения  – регулярными.

Иначе говоря,  есть регулярная точка, если оператор  обратим. При этом оператор -1 , как и любой оператор в конечномерном пространстве, ограничен, поэтому в конечномерном пространстве существует две возможности:

1)     уравнение  имеет ненулевое решение, т. е.  есть собственное значение для А , оператор -1 при этом не существует;

2)     существует ограниченный оператор -1, т.е.  есть регулярная точка.

В бесконечномерном пространстве существует третья возможность:

3)     оператор -1 существует, т.е. уравнение  имеет лишь нулевое решение, но этот оператор не ограничен.

Введем следующую терминологию. Число  мы назовем регулярным для оператора А, действующего в (комплексном) линейном нормированном пространстве Е, если оператор -1 , называемый резольвентой оператора А , определен на всем Е и непрерывен. Совокупность всех остальных значений  называется спектром оператора А . Спектру принадлежат все собственные значения оператора А, так как если х=0 при некотором , то -1 не существует. Их совокупность называется точечным спектром. Остальная часть спектра, т.е. совокупность тех , для которых -1 существует, но не непрерывен, называется непрерывным спектром. Итак, любое значение  является для оператора А или регулярным, или собственным значением, или точкой непрерывного спектра. Возможность наличия у оператора непрерывного спектра – существенное отличие теории операторов в бесконечномерном пространстве от конечномерного случая.

Теорема 6 [3]. Если А –ограниченный линейный оператор в банаховом пространстве и , то – регулярная точка.

Доказательство.

Так как, очевидно , то  . При  этот ряд сходится (теорема 4), т.е. оператор  имеет ограниченный обратный. Иначе говоря, спектр оператора А содержится в круге радиуса  с центром в нуле.

Теорема доказана.

Пример. В пространстве  функций, непрерывных на отрезке , рассмотрим оператор А, определяемый формулой Аx(t)=M(t)x(t) , где M(t)– фиксированная непрерывная функция. Возьмем произвольное число , тогда , а .

Спектр рассматриваемого оператора состоит из всех , для которых   Если функция M(t)- обращается в нуль при некотором t, заключенном между 0 и 1, то оператор  не определен на всем пространстве , так как функция  уже не обязана быть непрерывной.  Если же функция M(t)-  не обращается в нуль на отрезке , то  функция  непрерывна на этом отрезке, а, следовательно, ограничена: для некоторого   при всех  . Следовательно,  оператор  ограничен, а число  – регулярное для оператора А. Таким образом, спектр оператора А есть совокупность всех значений функции M(t) на отрезке [0;1], причем собственные значения отсутствуют, т.е. оператор умножения на t представляет собой пример оператора с чисто непрерывным спектром. 

Страницы: 1, 2