бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Методические особенности изучения темы "Железо" на уроках химии в средней школе бесплатно рефераты

Методические особенности изучения темы "Железо" на уроках химии в средней школе

ВВЕДЕНИЕ

Железо играло и играет исключительную роль в материальной истории человечества. Первое металлическое железо, попавшее в руки человека, имело, вероятно, метеоритное происхождение. Руды железа широко распространены и часто встречаются даже на поверхности Земли, но самородное железо на поверхности крайне редко. Вероятно, еще несколько тысяч лет назад человек заметил, что после горения костра в некоторых случаях наблюдается образование железа из тех кусков руды, которые случайно оказались в костре. При горении костра восстановление железа из руды происходит за счет реакции руды как непосредственно с углем, так и с образующимся при горении оксидом углерода (II) СО. Возможность получения железа из руд существенно облегчило обнаружение того факта, что при нагревании руды с углем возникает металл, который далее можно дополнительно очистить при ковке. Получение железа из руды с помощью сыродутного процесса было изобретено в Западной Азии во 2-м тысячелетии до нашей эры. Период с 9 – 7 века до нашей эры, когда у многих племен Европы и Азии развилась металлургия железа, получил название железного века, пришедшего на смену бронзовому веку. Усовершенствование способов дутия (естественную тягу сменили меха) и увеличение высоты горна (появились низкошахтные печи — домницы) привело к получению чугуна, который стали широко выплавлять в Западной Европе с 14 века. Полученный чугун переделывали в сталь. С середины 18 века в доменном процессе вместо древесного угля начали использовать каменно-угольный кокс. В дальнейшем способы получения железа из руд были значительно усовершенствованы, и в настоящее время для этого используют специальные устройства — домны, кислородные конвертеры, электродуговые печи.

Целью моей работы является освещение основных наиболее остро стоящих экологических проблем, связанных с железом и его соединениями, и возможные пути их решения.

Задачи:

1.     Обзор состояния данного вопроса в современной российской школе.

2.     Анализ школьных программ и учебников, а также другой литературы, показывающих как тема: «Железо и его соединения»изучаются в средней школе.

3.     Составить план урока, на котором была бы успешно проведена экологизация знаний.


ГЛАВА 1. ИЗУЧЕНИЕ ТЕМЫ: «ЖЕЛЕЗО И ЕГО СОЕДИНЕНИЙ» В ШКОЛЬНОМ КУРСЕ ХИМИИ


Историческая справка

В земной коре железо распространено достаточно широко — на его долю приходится около 4,1% массы земной коры (4-е место среди всех элементов, 2-е среди металлов). Известно большое число руд и минералов, содержащих железо. Наибольшее практическое значение имеют красные железняки (руда гематит, Fe2O3; содержит до 70% Fe), магнитные железняки (руда магнетит, Fe3О4; содержит 72,4% Fe), бурые железняки (руда гидрогетит НFeO2·nH2O), а также шпатовые железняки (руда сидерит, карбонат железа, FeСО3; содержит около 48% Fe). В природе встречаются также большие месторождения пирита FeS2 (другие названия — серный колчедан, железный колчедан, дисульфид железа и другие), но руды с высоким содержанием серы пока практического значения не имеют. По запасам железных руд Россия занимает первое место в мире. В морской воде 1·10–5 — 1·10–8% железа.

 

1.2 Тема «Железо и его соединения» в школьных программах по химии


В программе школьного курса химии на изучении темы «Железо и его соединения» отводится 5 часов; эта тема разбита на следующие подразделы: Общие понятия о положении железа в периодической системе химических элементов и строение атома. Основные методы получения железа-восстановление из оксидов железа и электролиз водных растворов солей железа. Физические, химические свойства и применение. Основные соединения железа и их получение. Экологические аспекты данной темы в школьной литературе изложены очень поверхностно или не изложены вовсе.

В школьных учебниках «Химия.9 класс»/Г. Е. Рудзитис, Ф. Г. Фельдман, «Химия. 9класс»/Н. С. Ахметов, и Пособие по химии для поступающих в вузы/ Г. П. Хомченко, на эту тему выделено три основных параграфа: § 1.Положение железа в периодической системе химических элементов и строение атома § 2.Нахождение железа в природе,его получение, свойства и применение § 3.Соединения железа, и мы будем рассматривать каждый параграф более подробно.

§ 1. Положение железа в периодической системе химических элементов и строение атома

Fe

d- элемент VIII группы; порядковый номер – 26; атомная масса – 56; (26p11; 30 n01), 26ē[1]


1s22s22p63s23p63d64s2


Металл средней активности, восстановитель.

Основные степени окисления - +2, +3



§ 2. Нахождение железа в природе,его получение и свойства

Нахождение в природе.

Железо является вторым по распространенности металлом в природе (после алюминия). В свободном состоянии железо встречается только в метеоритах, падающих на землю [2]. Наиболее важные природные соединения:

Fe2O3 • 3H2O - бурый железняк;

Fe2O3 - красный железняк;

Fe3O4(FeO • Fe2O3) - магнитный железняк;

FeS2 - железный колчедан (пирит).

Соединения железа входят в состав живых организмов.

Получение железа.

В промышленности железо получают восстановлением его из железных руд углеродом (коксом) и оксидом углерода (II) в доменных печах [1, 3]. Химизм доменного процесса следующий:


C + O2 = CO2,

CO2 + C = 2CO.

3Fe2O3 + CO = 2Fe3O4 + CO2,

Fe3O4 + CO = 3FeO + CO2,

FeO + CO = Fe + CO2.


Его также можно получить:

1)восстановлением железа из его оксида, например,  водородом при нагревании;

2)восстановлением железа из его оксидов  и  алюминотермическим методом;

3)электролизом водных растворов солей железа (II) [1].

Физические свойства.

Железо – серебристо серый металл, обладает большой ковкостью, пластичностью и сильными магнитными свойствами. Плотность железа – 7,87 г/см3, температура плавления 1539°С [1].

У Хомченко [3] также написано, что железо легко намагничивается и размагничивается, а потому применяется в качестве сердечников динамомашин и электромоторов. Кроме того, железо состоит из четырех стабильных изотопов с массовыми числами 54, 56(основной), 57 и 58. Применяются радиоактивные изотопы  и .

Химические свойства

В реакциях железо является восстановителем. Однако при обычной температуре оно не взаимодействует даже с самыми активными окислителями (галогенами, кислородом, серой), но при нагревании становится активным и реагирует с ними:


2Fe + 3Cl2 = 2FeCl3    Хлорид железа (III)

3Fe + 2O2 = Fe3O4(FeO · Fe2O3)  Оксид железа (II,III)

Fe + S = FeS     Сульфид железа (II)


При очень высокой температуре железо реагирует с углеродом, кремнием и фосфором:


3Fe + C = Fe3C   Карбид железа (цементит)

3Fe + Si = Fe3Si   Силицид железа

3Fe + 2P = Fe3P2   Фосфид железа (II)


Железо реагирует со сложными веществами.

Во влажном воздухе железо быстро окисляется (корродирует):


4Fe + 3O2 + 6H2O = 4Fe(OH)3,

O

Fe(OH)3 = Fe

O – H + H2O


Ржавчина

Железо находится в середине электрохимического ряда напряжений металлов, поэтому является металлом средней активности. Восстановительная способность у железа меньше, чем у щелочных, щелочноземельных металлов и у алюминия. Только при высокой температуре раскаленное железо реагирует с водой(700-900):


3Fe + 4H2O = Fe3O4 + 4H2­


Железо реагирует с разбавленными серной и соляной кислотами, вытесняя из кислот водород:


Fe + 2HCl = FeCl2 + H2­

Fe + H2SO4 = FeSO4 + H2­


При обычной температуре железо не взаимодействует с концентрированной серной кислотой, так как пассивируется ею [3]. При нагревании концентрированная H2SO4 окисляет железо до сульфита железа (III):


2Fe + 6H2SO4 = Fe2(SO4)3 + 3SO2­ + 6H2O.


Разбавленная азотная кислота окисляет железо до нитрата железа (III):


Fe + 4HNO3 = Fe(NO3)3 + NO­ + 2H2O.


Концентрированная азотная кислота пассивирует железо.

Из растворов солей железо вытесняет металлы, которые расположены правее его в электрохимическом ряду напряжений:


Fe + CuSO4 = FeSO4 + Cu, Fe0 + Cu2+ = Fe2+ + Cu0.

Применение и биологическая роль железа и его соединений.

Важнейшие сплавы железа – чугуны и стали – являются основными конструкционными материалами практически во всех отраслях современного производства [1].

Хлорид железа (III) FeCl3 применяется для очистки воды. В органическом синтезе FeCl3 применяется как катализатор. Нитрат железа Fe(NO3)3 · 9H2O используют при окраске тканей.

Железо является одним из важнейших микроэлементов в организме человека и животных (в организме взрослого человека содержится в виде соединений около 4 г Fe). Оно входит в состав гемоглобина, миоглобина, различных ферментов и других сложных железобелковых комплексов, которые находятся в печени и селезенке. Железо стимулирует функцию кроветворных органов [2, 3].


§ 3.Соединения железа


Соединения железа (II)

Оксид железа (II) FeO – черное кристаллическое вещество, нерастворимое в воде. Оксид железа (II) получают восстановлением оксида железа(II,III) оксидом углерода (II):


Fe3O4 + CO = 3FeO + CO2­.


Оксид железа (II) – основной оксид, легко реагирует с кислотами, при этом образуются соли железа(II):


FeO + 2HCl = FeCl2 + H2O,  FeO + 2H+ = Fe2+ + H2O.


Гидроксид железа (II) Fe(OH)2 – порошок белого цвета, не растворяется в воде. Получают его из солей железа (II) при взаимодействии их со щелочами:


FeSO4 + 2NaOH = Fe(OH)2¯ + Na2SO4,

Fe2+ + 2OH- = Fe(OH)2¯.


Гидроксид железа () Fe(OH)2 проявляет свойства основания, легко реагирует с кислотами:


Fe(OH)2 + 2HCl = FeCl2 + 2H2O,

Fe(OH)2 + 2H+ = Fe2+ + 2H2O.


При нагревании гидроксид железа (II) разлагается:


Fe(OH)2 = FeO + H2O.


Соединения со степенью окисления железа +2 проявляют восстановительные свойства, так как Fe2+ легко окисляются до Fe+3:


Fe+2 – 1e = Fe+3


Так, свежеполученный зеленоватый осадок Fe(OH)2 на воздухе очень быстро изменяет окраску – буреет. Изменение окраски объясняется окислением Fe(OH)2 в Fe(OH)3 кислородом воздуха:


4Fe+2(OH)2 + O2 + 2H2O = 4Fe+3(OH)3.


Восстановительные свойства проявляют и соли двухвалентного железа, особенно при действии окислителей в кислотной среде. Например, сульфат железа (II) восстанавливает перманганат калия в сернокислотной среде до сульфата марганца (II):


10Fe+2SO4 + 2KMn+7O4 + 8H2SO4 = 5Fe+32(SO4)3 + 2Mn+2SO4 + K2SO4 + 8H2O.


Качественная реакция на катион железа (II).

Реактивом для определения катиона железа Fe2+ является гексациано (III) феррат калия (красная кровяная соль) K3[Fe(CN)6]:


3FeSO4 + 2K3[Fe(CN)6] = Fe3[Fe(CN)6]2¯ + 3K2SO4.


При взаимодействии ионов [Fe(CN)6]3- с катионами железа Fe2+ образуется темно-синий осадок – турнбулева синь:


3Fe2+ +2[Fe(CN)6]3- = Fe3[Fe(CN)6]2¯ [3].


Соединения железа (III)

Оксид железа (III) Fe2O3 – порошок бурого цвета, не растворяется в воде. Оксид железа (III) получают:

А) разложением гидроксида железа (III):


2Fe(OH)3 = Fe2O3 + 3H2O


Б) окислением пирита (FeS2):


4Fe+2S2-1 + 11O20 = 2Fe2+3O3 + 8S+4O2-2.

Fe+2 – 1e ® Fe+3 

2S-1 – 10e ® 2S+4 

O20 + 4e ® 2O-2 11e

Оксид железа (III) проявляет амфотерные свойства:


А) взаимодействует с твердыми щелочами NaOH и KOH и с карбонатами натрия и калия при высокой температуре:


Fe2O3 + 2NaOH = 2NaFeO2 + H2O,

Fe2O3 + 2OH- = 2FeO2- + H2O,

Fe2O3 + Na2CO3 = 2NaFeO2 + CO2.


Феррит натрия

Гидроксид железа (III) получают из солей железа (III) при взаимодействии их со щелочами:


FeCl3 + 3NaOH = Fe(OH)3¯ + 3NaCl,

Fe3+ + 3OH- = Fe(OH)3¯.


Гидроксид железа (III) является более слабым основанием, чем Fe(OH)2, и проявляет амфотерные свойства (с преобладанием основных). При взаимодействии с разбавленными кислотами Fe(OH)3 легко образует соответствующие соли:


Fe(OH)3 + 3HCl « FeCl3 + H2O

2Fe(OH)3 + 3H2SO4 « Fe2(SO4)3 + 6H2O

Fe(OH)3 + 3H+ « Fe3+ + 3H2O


Реакции с концентрированными растворами щелочей протекают лишь при длительном нагревании. При этом получаются устойчивые гидрокомплексы с координационным числом 4 или 6:


Fe(OH)3 + NaOH = Na[Fe(OH)4],

Fe(OH)3 + OH- = [Fe(OH)4]-,

Fe(OH)3 + 3NaOH = Na3[Fe(OH)6],

Fe(OH)3 + 3OH- = [Fe(OH)6]3-.


Соединения со степенью окисления железа +3 проявляют окислительные свойства, так как под действием восстановителей Fe+3 превращается в Fe+2:


Fe+3 + 1e = Fe+2.


Так, например, хлорид железа (III) окисляет йодид калия до свободного йода:


2Fe+3Cl3 + 2KI = 2Fe+2Cl2 + 2KCl + I20


Качественные реакции на катион железа (III)

А) Реактивом для обнаружения катиона Fe3+ является гексациано (II) феррат калия (желтая кровяная соль) K2[Fe(CN)6].

При взаимодействии ионов [Fe(CN)6]4- с ионами Fe3+ образуется темно-синий осадок – берлинская лазурь:


4FeCl3 + 3K4[Fe(CN)6] « Fe4[Fe(CN)6]3¯ +12KCl,

4Fe3+ + 3[Fe(CN)6]4- = Fe4[Fe(CN)6]3¯.


Б) Катионы Fe3+ легко обнаруживаются с помощью роданида аммония (NH4CNS). В результате взаимодействия ионов CNS-1 с катионами железа (III) Fe3+ образуется малодиссоциирующий роданид железа (III) кроваво-красного цвета:


FeCl3 + 3NH4CNS « Fe(CNS)3 + 3NH4Cl,

Fe3+ + 3CNS1- « Fe(CNS)3 [1,3]

 


ГЛАВА II. ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ, СВЯЗАННЫЕ С ИЗУЧЕНИЕМ ТЕМЫ: « ЖЕЛЕЗО И ЕГО СОЕДИНЕНИЯ»


Железо присутствует в организмах всех растений и животных как микроэлемент, то есть в очень малых количествах (в среднем около 0,02%). Однако железобактерии, использующие энергию окисления железа (II) в железо (III) для хемосинтеза, могут накапливать в своих клетках до 17-20% железа. Основная биологическая функция железа — участие в транспорте кислорода (O) и окислительных процессах. Эту функцию железа выполняет в составе сложных белков — гемопротеидов, простетической группой которых является железопорфириновый комплекс — гем. Среди важнейших гемопротеидов дыхательные пигменты гемоглобин и миоглобин, универсальные переносчики электронов в реакциях клеточного дыхания, окисления и фотосинеза цитохромы, ферменты каталоза и пероксида, и других. У некоторых беспозвоночных железосодержащие дыхательные пигменты гелоэритрин и хлорокруорин имеют отличное от гемоглобинов строение. При биосинтезе гемопротеидов железо переходит к ним от белка ферритина, осуществляющего запасание и транспорт железа. Этот белок, одна молекула которого включает около 4 500 атомов железа, концентрируется в печени, селезенке, костном мозге и слизистой кишечника млекопитающих и человека. Суточная потребность человека в железе (6-20 мг) с избытком покрывается пищей (железом богаты мясо, печень, яйца, хлеб, шпинат, свекла и другие). В организме среднего человека (масса тела 70 кг) содержится 4,2 г железа, в 1 л крови — около 450 мг. При недостатке железа в организме развивается железистая анемия, которую лечат с помощью препаратов, содержащих железо. Препараты железа применяются и как общеукрепляющие средства. Избыточная доза железа (200 мг и выше) может оказывать токсичное действие. Железо также необходимо для нормального развития растений, поэтому существуют микроудобрения на основе препаратов железа [4,5]. Однако железо может представлять определенную экологическую опасность для окружающей среды, и это следует также рассматривать при изучении темы: «Железо и его соединения». Рассмотрим экологические проблемы, связанные с железом.

В зонах металлургических комбинатов в твердых выбросах содержится от22000 до 31000 мг/кг железа. В прилегающие к комбинатам почвы поступает до 31-42 мг/кг железа. Вследствие этого железо накапливается в огородных культурах [6].

Содержание железа в составе сырого осадка, выпадающего в первичных отстойниках крупного промышленного города, может достигать 1428 мг/кг. Пыль, дым промышленных производств могут содержать большие количества железа в виде аэрозолей железа, его оксидов, руд.

Пыль железа или его оксидов образуется при заточке металлического инструмента, очистке деталей от ржавчины, прокате железных листов, электросварке и при других производственных процессах, в которых имеют место железо или его соединения. Железо может накапливаться в почвах, водоемах, воздухе, живых организмах [6,7].

Основные минералы железа подвергаются в природе фотохимическому разрушению, комплексообразованию, микробиологическому выщелачиванию, в результате чего, железо из труднорастворимых минералов переходит в водные объекты.

Железосодержащие минералы окисляются бактериями типа Th. Ferrooxidans. Пирит – обычный примесный компонент угольных месторождений, и его выщелачивание приводит к закислению шахтных вод. По одной из оценок, в1932г. в реку Огайо (США) с шахтными водами поступило около 3 млн. тонн H2SO4. Микробиологическое выщелачивание железа осуществляется не только за счет окисления, но и при восстановлении окисленных руд. В нем принимают участие микроорганизмы относящиеся к разным группам. В частности, восстановление Fe3+ до Fe2+ осуществляют представители родов Bacillus и Pseudomonas, а так же некоторые грибы.

Страницы: 1, 2, 3, 4