бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Элективный курс по математике для классов спортивно-оборонного профиля бесплатно рефераты

При табличном задании первая строка содержит возможные значения, а вторая – их вероятности :

Х

x1

x2

xn

p

p1

p2

pn

Сумма вероятностей второй строки таблицы равнеа единице:

.

Если множество возможных значений Х бесконечно, то ряд  сходится и его сумма равна единице.

Для наглядности закон распределения дискретной случайной величины можно изобразить и графически, для чего в прямоугольной системе координат строят точки i; pi), а затем соединяют их отрезками прямых. Полученную фигуру называют многоугольником распределения.

 

3.3 Биноминальное распределение


Пусть производится n независимых испытаний, в каждом из которых событие А может появиться либо не появиться. Вероятность наступления события во всех испытаниях постоянна и равна р, тогда вероятность не появления q=1-p. Рассмотрим в качестве дискретной случайной величины Х число появления события А в этих испытаниях.

Найдем закон распределения величины Х. Событие А в n испытаниях может появиться либо не появиться, Следовательно Х может принимать следующие значения х1=0, х2=1, х3=2, и так далее. Вероятность данных значений можно найти используя формулу Бернулли:

,

Биноминальным называют распределение вероятностей, определяемое формулой Бернулли. Данный закон назван биноминальным потому, что правую часть равенства  можно рассматривать, как общий член разложения бинома Ньютона.

Напишем биноминальный закон в виде таблицы:


Х

n

n-1

k

0

p

 

3.4Распределение Пуассона


Пусть производится n независимых испытаний, в каждом из которых  вероятность появления события А равна р. Для определения вероятности к появлений события А используют формулу Бернулли. Если n велико то пользуются формулой ЛапласаЮ однако эта формула непригодна, если вероятность события мала (p<0.1). В этих случаях (n велико, а р – мало). Используют формулу Пуассона:

,

Где .

Эта формула выражает закон распределения Пуассона вероятностей массовых и редких событий. Имеются специальные таблицы, пользуясь которыми можно найти значения , если нам известны  и к.

3.5 Математическое ожидание и дисперсия


Как известно закон распределения полностью характеризует случайную величину. Однако часто закон распределения неизвестен и приходится ограничиваться меньшими сведениями. Также для решения многих задач не нужно знать распределения случайной величины, а достаточно знать лишь некоторые обобщающие числовые хараткеристики этого распределения.

Одной из таких характеристик является математическое ожидание. Для более наглядного определения рассмотрим подход к этому понятию на конкретном примере.

Пусть имеется дискретная случайная величина Х, которая может принимать значения х1, х2, …, хn. Вероятности которых соответственно равны р1, р2, …, рn. Тогда математическое ожидание М(Х) случайной величины Х определяется равенством:

.

Если дискретная случайная величина Х принимает счетное множество всевозможных значений, то

,

Причем математическое ожидание существует, если ряд в правой части равенства сходится абсолютно.

Математическое ожидание приближенно равно (тем точнее, чем больше число испытаний) среднему арифметическому наблюдаемых значений случайной величины.

Свойства математического ожидания:

1.                 Математическое ожидание постоянной величины равно самой постоянной

М(С)=С.

2.                 Постоянный сомножитель можно выносить за знак математического ожидания

М(СХ)=СМ(Х).

3.                 Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий

М(ХУ)=М(Х)М(У).

4.                 Математическое ожидание числа появлений события А в n независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании

М(Х)=np.

Для непрерывных случайных величин дисперсию можно найти по следующей       формуле:

.

На практике часто требуется оценить рассеяние возможных значений случайно величины вокруг ее среднего значения. Например в артиллерии важно знать, насколько кучно лягут снаряды вблизи цели, которая должна быть поражена. Именно такие задачи решает дисперсия.

Дисперсией случайной величины Х называется математическое ожидание квадрата отклонений случайной величины от ее математического ожидания. Дисперсия обозначается, как D(x)

D(Х)=M[X-М(Х)]2.

Для вычисления дисперсии часто бывает удобно пользоваться следующей формулой:

Дисперсия равна разности между математическим ожиданием квадрата случайной величины Х и квадратом ее математического ожидания

D(Х)=M(X)2-[М(Х)]2.

Свойства дисперсии:

1.                 Дисперсия постоянной величины С равна 0

D(С)=0.

2.                 Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат

D(СХ)=С2 D(Х).

3.                 Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин

D(Х+У)=D(X)+D(У).

4.                 Дисперсия разности двух независимых случайных величин равна сумме их дисперсий

D(Х-У)=D(X)+D(У).

5.                 дисперсия числа появлений события А в n независимых испытаниях, в каждом из которых вероятность р появления события постоянна, равна n произведению числа испытаний на вероятности появления и не появления события в одном испытании:

D(Х)=npq.

Для оценки рассеяния всевозможных значений случайной величины вокруг ее среднего значения кроме дисперсии служат и другие величины.

Средним квадратическим отклонением величины Х называют квадратный корень из дисперсии

.

3.6 Вероятность попадания в заданный интервал

Очень часто интересует вопрос: какова вероятность, того что изучаемый признак находится в заданных границах. Например, вероятность того, что результат в беге на 100 м для группы испытуемых окажется в пределах 11,5 – 12,5 с.

Для этого пользуются функцией Лапласа:

P[x1<(X-μ)<x2]=Ф()-Ф().

Решение задач

Задача 1. В денежной лотерее выпущено 100 билетов. Разыгрывается один выигрыш в 50 р. и десять выигрышей по 1 р. Найти закон распределения случайной величины Х – стоимости возможного выигрыша для владельца лотерейного билета.

Решение. Напишем возможные значения Х: х1=50; х2=1; х3=0. Вероятности этих возможных значений равны: р1=0,01; р2= 0,1; р3=1-(0,01+0,1)=0,89.

Напишем исходный закон распределения:

Х

50

10

0

p

0,01

0,1

0,89

Контроль: 0,01+0,1+0,89=1

Задача 2. Завод отправил на базу 5000 доброкачественных изделий. Вероятность того, что изделие в пути повредиться равна 0,0002. Найти вероятность того, что на базу придут 3 негодных изделия.

Решение. По условию n=5000, р=0,0002, к=3. Найдем :

=np=1

По формуле Пуассона искомая вероятность приближенно равна:

.

Задача 3. Найти дисперсию случайной величины Х, которая задана следующим законом распределения:

Х

1

2

5

p

0,3

0,5

0,2

Решение. Найдем математическое ожидание:

.

Найдем всевозможные значения квадрата отклонения:

.

Напишем закон квадрата отклонения:

[Х-М(Х)]2

1,69

0,09

7,29

p

0,3

0,5

0,2

По определению:

.

Используя формулу D(Х)=M(X)2-[М(Х)]2 можно найти дисперсию гораздо быстрее:

.

Задачи для самостоятельного решения

3.1

Вероятность поражения мишени при одном выстреле 0,8. Найти вероятность того, что при 100 выстрелах мишень будет поражена 75 раз.

3.2

Линия связи, имеющая к каналов связывает два города, где n абонентов, каждый из которых пользуется телефоном в среднем 5 минут в час. Найти вероятность безотказного обслуживания абонентов.

3.3

В лотерее 40000 билетов, ценные выигрыши попадают на 3 билета. Определить: а) вероятность получения хотя бы одного выигрыша на 1000 билетов; б) сколько необходимо приобрести билетов, чтобы вероятность выигрыша была не менее 0,5.

3.4

Найти математическое ожидание дискретной случайно величины Х заданной законом распределения:

А)

Х

-4

6

10

 P

0,2

0,3

0,5

Б)

Х

0,21

0,54

0,61

p

0,1

0,5

0,4

3.5

Дискретная случайная величина Х принимает три возможных значения

Х

4

6

х

p

0,5

0,3

р

Найти х и р, если М(Х)=8

3.6

Дискретная случайная величина имеет только 2 возможных значения х и у, причем x<y. Вероятность того что Х примет значение х 0,6. Найти закон распределения величины Х, если математическое ожидание и дисперсия известны: М(Х)=1,4, D(X)=0.24.


II Статистика.

Определение: Простой гипотезой будем называть  любое предположение, однозначно определяющее распределение выборки Х.

Пусть даны r распределителей P1, …, Pr и пусть нам известно что Х есть выборка одного из этих распределений. Задача состоит в том, чтобы определить, к какому именно Р относится Х.

Определение: Нулевой называют выдвинутую гипотезу.

 

1.Проверка гипотезы о разности двух средних значений


Проверка гипотезы о разности между двумя средними арифметическими – одна из наиболее часто встречающихся задач исследовательской работы.

Рассмотрим следующий пример: Две группы велосипедистов использовали в соревновательном периоде два различных метода силовой подготовки. Первая группа весь объем силовых упражнений распределила на весь сезон. Вторая группа тот же объем использовала во второй половине сезона, а в первой совсем не применяла силовых упражнений. Эффективность методов тренировки оценивалась по приросту результатов на дистанции 500 м с места, которые оказались следующими (в секундах):

Первая группа (Х1): 1,0; 2,1; 1,2; 1,9; 0,9; 0,8; 2,0; 0,8; 1,5; 2,0.

Вторая группа (Х2): 0,8; 1,0; 1,3; 0,7; 0,7; 0,4; 0,9; 1,4; 1,5; 1,5.

Рассчитаем средние арифметические для каждой группы:

Таким образом, средний прирост спортивного результата в первой группе на 0,4 сек. Выше, чем во второй. Следует отметить, что по исходным данным группы были однородны. Очевидно, разность между средними арифметическими не говорит о том, что один метод тренировки эффективнее, чем другой. Даже если бы обе группы использовали одинаковые методы тренировки, средние арифметические почти наверняка были бы разными, так как прирост результатов зависти не только от методов тренировки, но и определяется некоторыми другими факторами, например, питанием спортсменов, занятостью в учебе или работе, болезнями и т.п. При не большом числе испытуемых эти факторы могли бы сложится более благоприятно, для какой то одной группы. Следовательно, задача состоит в том, чтобы установить, можно ли объяснить различие в среднем приросте результата случайностью или оно отражает тот факт, что один метод тренировки эффективнее, чем другой.

На языке математической статистики эта задача формулируется следующим образом. Прирост результатов для испытуемых первой группы рассматривается как случайная выборка из генеральной совокупности с параметрами и . Аналогично для второй группы существует генеральная совокупность с параметрами и . Требуется проверить нулевую гипотезу о том, что =. В математической статистике доказывается, что

,

где .

Если величина t окажется слишком большой, то нулевая гипотеза должна быть отвергнута, как малоправдоподобная. В этом случае надо взять альтернативную гипотезу Н1: ≠

Составим порядок применения t-критерия для проверки гипотезы о разности между двумя генеральными средними:

1.                 Проверить гипотезу о нормальности распределения наблюдений в каждой группе.

2.                 Рассчитать для каждой группы

3.                 Проверить гипотезу .

4.                 Рассчитать стандартную ошибку разности между средними арифметическими.

5.                 Рассчитать величину критерия t. Сравнить полученное значение с граничным при выбранном уровне значимости и степеней свободы.

6.                 если нулевая гипотеза отвергнута, то построить доверительный интервал для разности между генеральными средними.

Пример. Применим t-критерий для проверки гипотезы H0: =, к данным примера приведенного в начале параграфа.

1.                 проверить гипотезу о нормальности распределения можно позже, когда будут описаны соответствующие критерии.

2.                

3.                 . Граничное значение при 5 процентном уровне значимости и числе степеней свободы для большей дисперсии f1=9 и меньшей  f2=9 равно 4,03. Так как полученное значение критерия меньше граничного, то нулевая гипотеза не отвергается, то есть выборки взяты из генеральных совокупностей с равными дисперсиями.

4.                 Так как число наблюдений в группах равное, то стандартная ошибка разности равна:

5.                

Число степеней свободы в данном примере f=10+10-2=18. Граничное значение при 5-процентном уровне значимости и 18 степенях свободы равно 2,01. Так как полученное значение критерия t меньше граничного, гипотеза о равенстве генеральных средних не отвергается. Таким образом не смотря на то, что средний результат средних приростов в двух группах различный, нет оснований говорить, что один из методов лучше, чем другой. Полученное различие может быть объяснено случайностью.

2 Посторенние линии регрессии для корреляции


Во многих задачах требуется установить и оценить зависимость изучаемой случайной величины У от одной или нескольких других величин. Так например может интересовать зависимость между спортивным результатом конькобежца и его аэробными возможностями, зависимость между силой мышц и скоростью их сокращения.

В некоторых случаях можно установить функциональную зависимость. При исследованиях в области спорта чаще всего приходится сталкиваться с корреляционной зависимостью, при которой каждому значению зависимой переменной соответствует ряд распределения зависимой переменной, и с изменением первой положение этих рядов закономерно изменяется.

Корреляционные зависимости могут быть представлены, как и в табличной форме так и в виде графической зависимости. Для этого каждой клетке корреляционной таблицы нужно равномерно распределить соответствующие указанной цифре число точек. Для построения первичного поля корреляции в обычной системе координат наносятся точки с координатами (Х;У) в соответствии с исходными данными.

В исследовательской работе корреляционные величины встречаются очень часто. Обычно величина У зависит от большого количества аргументов: Х1; Х2; …; Хm. В случае линейной функции эту зависимотсть можно записать в виде:

У=а+b1X1+b2X2+…+bmXm.

Например, результат конькобежца определяется не только аэробными возможностями организма, но также силой и скоростью сокращения мышц, техникой бега, волевыми качествами и т.д. Если анализировать все аргументы, то получится функциональная зависимость.

При изучении корреляционных зависимостей между двумя признаками обычно решаются следующие задачи:

1.                 Установление формы связи между функцией У и аргументом Х, то есть описание закона изменения величины условных средних  в связи с изменением Х. Эта задача решается путем  нахождения уравнения регрессии.

2.                 Оценка тесноты связи между У и Х. Решение этой задачи требует ответов на два вопроса:

a.                  Есть ли вообще между Х и У корреляционная зависимость, т.е. наблюдается ли закономерное изменение условных средних  в связи с изменением Х?

b.                 Если корреляционная зависимость существует, то в какой степени она отличается от функциональной?

Для решения данной задачи могут использоваться различные модели. Наиболее часто используется регрессионная и корреляционная модель.

Регрессионная модель предполагает, что зависимая переменная У является случайной величиной, а значения независимой переменной задаются экспериментатором произвольно. Например, исследуя зависимость скорости мышечного сокращения от величины поднимаемого груза, можно наметить, какие грузы должен поднимать испытуемый.

Корреляционная модель предполагает, что обе переменные – случайные величины.

Простейшей формой связи между двумя переменными является линейная зависимость вида У=а+bX. Параметр а носит название начальной ординаты. Параметр b носит название коэффициента регрессии, он характеризует наклон прямой линии.

Расчет параметров уравнения регрессии производится по методу наименьших квадратов:

.

Для выполнения этого учловия параметры находят из решения системы уравнений:

Которое можно представить в виде готовых формул:

.

Уравнение регрессии служит для анализа формы связи между двумя признаками.


III Математические методы

 

1 Дерево решений


Дерево решений используют, когда нужно принять несколько решений в условиях неопределенности, когда каждое решение зависит от исхода предыдущего или исхода испытаний. Составляя “дерево” решений нужно нарисовать “ствол” и “ветви”, отражающие структуру проблемы. Располагаются “деревья” слева направо. “Ветви” обозначают возможные альтернативные решения, которые могут быть приняты, и возможные исходы, возникающие в результате этих решений.

Квадратные “узлы” обозначают места, где принимаются решение, круглые “узлы” - появление исходов. Так как принимающий решение не может влиять на появление исходов, ему остается лишь вычислять вероятность их появления.

Когда все решения и их исходы указаны на “дереве”, просчитывается каждый из вариантов, и в конце проставляется его денежный доход. Все расходы, вызванные решением, проставляются на соответствующей “ветви”.

Рассмотрим пример: "Играть ли в гольф?" Чтобы решить задачу, т.е. принять решение, играть ли в гольф, следует отнести текущую ситуацию к одному из известных классов (в данном случае - "играть" или "не играть"). Для этого требуется ответить на ряд вопросов, которые находятся в узлах этого дерева, начиная с его корня.

Первый узел нашего дерева "Солнечно?" является узлом проверки, т.е. условием. При положительном ответе на вопрос осуществляется переход к левой части дерева, называемой левой ветвью, при отрицательном - к правой части дерева. Таким образом, внутренний узел дерева является узлом проверки определенного условия. Далее идет следующий вопрос и т.д., пока не будет достигнут конечный узел дерева, являющийся узлом решения. Для нашего дерева существует два типа конечного узла: "играть" и "не играть" в гольф.

В результате прохождения от корня дерева (иногда называемого корневой вершиной) до его вершины решается задача классификации, т.е. выбирается один из классов - "играть" и "не играть" в гольф.


Любая модель, представленная в виде дерева решений, является интуитивной и упрощает понимание решаемой задачи. Результат работы алгоритмов конструирования деревьев решений легко интерпретируется пользователем. Это свойство деревьев решений не только важно при отнесении к определенному классу нового объекта, но и полезно при интерпретации модели классификации в целом. Дерево решений позволяет понять и объяснить, почему конкретный объект относится к тому или иному классу.

Алгоритм конструирования дерева решений не требует от пользователя выбора входных атрибутов (независимых переменных). На вход алгоритма можно подавать все существующие атрибуты, алгоритм сам выберет наиболее значимые среди них, и только они будут использованы для построения дерева.

Точность моделей, созданных при помощи деревьев решений, сопоставима с другими методами построения классификационных моделей (статистические методы, нейронные сети).

 

2 Игры


В практике часто встречаются конфликтные ситуации. Игра – это упрощенная модель конфликта. В отличии от конфликта игра ведется по четким правилам. Для решения конфликтов разработан специальный аппарат – теория игр. Для задания игры необходимо определить:

1. варианты действий игроков

2. объем информации каждого игрока о поведении противника

3. выигрыш, к которому приводит совокупность действий игроков.

Игра в которой участвуют два игрока называется парной. В игре где участвуют более двух игроков называется множественной.

Игра в которой выигрыш одного из игроков равен проигрышу другого, называют игрой с нулевой суммой (антагонистической игрой)

Естественным обобщением матричных игр являются бесконечные антагонистические игры (БАИ), в которых хотя бы один из игроков имеет бесконечное количество возможных стратегий. Мы будем рассматривать игры двух игроков, делающих по одному ходу, и после этого происходит распределение выигрышей. При формализации реальной ситуации с бесконечным числом выборов можно каждую стратегию сопоставить определённому числу из единичного интервала, т.к. всегда можно простым преобразованием любой интервал перевести в единичный и наоборот.

Введём определения и обозначения : [0; 1] – единичный промежуток, из которого игрок может сделать выбор;

 х – число (стратегия), выбираемое игроком 1;

 y – число (стратегия), выбираемое игроком 2;

Мi(x,y) – выигрыш i-го игрока; G (X,Y,M1,M2) – игра двух игроков, с ненулевой суммой, в которой игрок 1 выбирает число  х  из множества Х, игрок 2 выбирает число  y  из множества  Y, и после этого игроки 1 и 2 получают соответственно выигрыши M1(x, y) и M2(x, y). Пусть, далее, G (X,Y,M) – игра двух игроков с нулевой суммой, в которой игрок 1 выбирает число  х, игрок 2 – число  y, после чего игрок 1 получает выигрыш  М(x, y) за счёт второго игрока.

Большое значение в теории  БАИ  имеет вид функции выигрышей  M(x, y). Так, в отличии от матричных игр, не для всякой функции M(x, y) существует решение. Будем считать, что выбор определённого числа игроком означает применение его чистой стратегии, соответствующей этому числу. По аналогии с матричными играми назовём чистой нижней ценой игры величину

V1 = M(x, y)   или   V1 = M(x, y),

а чистой верхней ценой игры величину

V2 = M(x, y)   или   V2 = M(x, y),

Для матричных игр величины V1 и V2 всегда существуют, а в бесконечных играх они могут не существовать.

Естественно считать, что, если для какой-либо бесконечной игры величины V1 и V2 существуют и равны между собой (V1 = V2 = V), то такая игра имеет решение в чистых стратегиях, т.е. оптимальной стратегией игрока 1 есть выбор числа xoÎX и игрока 2 – числа yoÎY, при которых M(xo, yo) = V, в этом случае V называется ценой игры, а (xo, yo) – седловой точкой в чистых стратегиях.


Пример 1. Игрок 1 выбирает число  х  из множества Х = [0; 1], игрок 2 выбирает число y из множества Y = [0; 1]. После этого  игрок 2 платит игроку 1 сумму

M(x, y) = 2х2 - y2.

Поскольку игрок 2 хочет минимизировать выигрыш игрока 1, то он определяет

(2x2 - y2) = 2х2 - 1,

т.е. при этом y = 1. Игрок 1 желает максимизировать свой выигрыш, и поэтому определяет

(M(x, y)) = (2х2 - 1) = 2-1 = 1,

который достигается при х = 1.

Итак, нижняя цена игры равна V1 = 1. Верхняя цена игры

V2 = ((2х2 - y2)) = (2 - y2) = 2-1 = 1,

т.е. в этой игре V1 = V2 = 1. Поэтому цена игры V = 1, а седловая точка (1;1).

 

3 Линейное программирование

Программирование- это процесс распределения ресурсов.

Математическое программирование- это использование математических методов и моделей для решения проблем программирования. Если цель исследования и ограничения на ресурсы можно выразить количеством в виде линейных зависимостей между переменными, то соответствующий раздел математического программирования называется линейным программированием.

Литература


1.                 Теория вероятностей и математическая статистика: / В.Е. Гмурман; М.: Высшая школа – 1999 г. – 479с.

2.                 Руководство к решению задач по теории вероятностей и математической статистике: / В.Е. Гмурман; М.: Высшая школа – 2002 г. – 404 с.

3.                 Задачи и упражнения по теории вероятностей: / Е.С. Вентцель, Л.А. Овчаров; М.: Высшая школа – 2002 г. – 445 с.

4.                 Теория вероятностей: / Е.С. Венцель; М.: Наука – 1964 г. – 572 с.

5.                 Математическая статистика. Оценка параметров. Проверка гипотез: / А.А. Боровнов; М.: Наука – 1984 г. – 469 с.

6.                 Элементы высшей математики для школьников: /Д.К. Фадеев; М.: Наука – 1987 г. 335 с.

7.                 Математические методы в экономике. Учебно-методическое пособие. 3-е издание: / Г.И. Просветов; М.: РДЛ – 2007 г. – 160 с.

8.                 Теория вероятностей в примерах и задачах: Учебное пособие / М.А. Матальский, Т.В. Романюк – Гордно: ГрГУ; 2002 г.-248 с.

9.                 Основы математической статистики: Учебное пособие для ин-ов физ.культ./ Под ред. В.С. Иванова – М.: Физкультура и спорт; 1990 г.- 176 с.

10.            Математико – статистические методы в спорте. М., Физкультура и спорт; 1974 г. – 151 с.


Страницы: 1, 2, 3


 © 2010 Все права защищены.