бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Экономико-математические методы и модели бесплатно рефераты

Равновесие - состояние экономической системы, которое характе­ризуется равенством спроса и предложения всех ресурсов.

Регрессия - зависимость среднего значения какой-либо случайной величины от некоторой другой величины или нескольких вели­чин. Распределение этих значений называется условным распределением у при дан­ном х. Множественная регрессия в определенных условиях по­зволяет исследовать влияние причинных факторов.

Рекурсия - в общем смысле вычисление функции по определенно­му алгоритму. Примерами таких алгоритмов являются рекур­рентные формулы, выводящие вычисление заданного члена по­следовательности (чаще всего числовой) из вычисления не­скольких предыдущих ее членов.

Статистическое моделирование - способ исследования процессов повеления вероятностных систем в условиях, когда неизвестны внутренние взаимодействия в этих системах.

Стохастическая имитация — вид машинной имитации, отличающий­ся от детерминированной тем, что включает в модель в том или ином виде случайные возмущения, отражающие вероятностный характер моделируемой системы.

Устойчивость решения — обычно, говоря об устойчивости решения задачи, имеют в виду, что малые изменения каких-либо характе­ристик, например, начальных условий, ограничений или целе­вого функционала, не приводят к качественному изменению ре­шения.

Целевая функция в экстремальных задачах - функция, минимум или максимум которой нужно найти. Это  ключевое понятие оптимального программирования. Найдя экстремум целевой функции и, следовательно, определив значения управляемых переменных, которые k нему приводят, мы тем самым находим оптимальное решение задачи.

Шкалы — системы чисел или иных элементов, принятых для оцен­ки или измерения каких-либо величин. Шкалы используются для оценки и выявления связей и отношений между элементами систем. Особенно широко их применение для оценки величин, выступающих в роли критериев качества функционирования систем, в частности, критериев оптимальности при решении экономико-математических задач.

Практическое занятие.

Тема. Методы линейной алгебры в экономическом анализе.

Цель. Решение экономических задач с элементами моделирования, опирающиеся на базовую основу линейной алгебры.

1. Справочный материал.

Понятие матрицы часто используется в практической деятельности, например, данные о выпуске продукции нескольких видов в каждом квартале года или нормы затрат нескольких видов ресурсов на производство продукции нескольких типов и т.д. удобно записывать в виде матрицы.


Задача 1. В некоторой отрасли m заводов выпускают n видов продукции. Матрица  задаёт объёмы продукции на каждом заводе в первом квартале, матрица  - соответственно во втором; (аij, вij) – объёмы продукции j –го типа на i –м заводе в 1-м и 2-м кварталах соответственно:

;   .

Найти:

а) объёмы продукции;

б) прирост объёмов производства во втором квартале по сравнению с первым по видам продукции и заводам;

в) стоимостное выражение выпущенной продукции за полгода (в долларах), если λ – курс доллара по отношению к рублю.

Решение:

а) Объёмы продукции за полугодие определяются суммой матриц, т.е. С=А+В=, где сij – объём продукции j-го типа, произведённый за полугодие i-м заводом.

б) Прирост во втором квартале по сравнению с первым определяется разностью матриц, т.е.

Д=В-А= . Отрицательные элементы показывают, что на данном заводе объём производства уменьшился, положительные – увеличился, нулевые – не изменился.

в) Произведение λC= λ(А+В) даёт выражение стоимости объёмов производства за квартал в долларах по каждому заводу и каждому предприятию.


Задача 2.  Предприятие производит n типов продукции, используя m видов ресурсов. Нормы затрат ресурса i-го товара на производство единицы продукции j-го типа заданы матрицей затрат . Пусть за определённый отрезок времени предприятие выпустило количество продукции каждого типа , записанное матрицей .

Определить S – матрицу полных затрат ресурсов каждого вида на производство всей продукции за данный период времени, если

,  .   Решение. Матрица полных затрат ресурсов S определяется как произведение матриц, т.е. S=AX.

, т.е за данный период времени будет израсходовано 930 ед. ресурса 1-го вида, 960 ед. ресурса 2-го вида, 450 ед. ресурса 3-го вида, 630 ед. ресурса 4-го вида.


Задача 3.  Завод производит двигатели, которые могут либо сразу потребовать дополнительной регулировки (в 40% случаев), либо сразу могут быть использованы (в 60% случаев). Как показывают статистические исследования, те двигатели, которые изначально требовали регулировки, потребуют дополнительной регулировки через месяц в 65% случаев, а в 35% случаев через месяц будут работать хорошо. Те же двигатели, которые не требовали первоначальной регулировки, потребуют её через месяц в 20% случаев и продолжат хорошо работать в 80% случаев. Какова доля двигателей, которые будут работать хорошо или потребуют регулировки через 2 месяца после выпуска? Через 3 месяца?

Решение.

В момент после выпуска доля хороших двигателей составляет 0,6, а доля требующих регулировки – 0,4. Через месяц доля хороших составит: 0,6.0,8+0,4.0,35=0,62. Доля требующих регулировки: 0,6.0,2+0,4.0,65=0,38. введём строку состояния Xt в момент t; Xt=(x1t; x2t), где x1t – доля хороших двигателей,  x2t – доля двигателей, требующих регулировки в момент t.

Матрица перехода , где - доля двигателей, которые в настоящее время находятся в состоянии  ( 1- «хороший», 2- «требует регулировки»), а через месяц – в состоянии .

Очевидно, что для матрицы перехода сумма элементов каждой строки равна 1,  все элементы неотрицательны.

Очевидно,  =(0,6  0,4),  .

Тогда через месяц ,

через 2 месяца   ; через 3 месяца .

Найдём матрицы ;

.

Отметим, что если - матрица перехода, то - тоже матрица перехода при любом натуральном t. Теперь

 ,

.

Очевидно, .


Задача 3.  Фирма состоит из двух отделений, суммарная величина прибыли которых в минувшем году составила 12 млн. усл. ед. На этот год запланировано увеличение прибыли первого отделения на 70%, второго – на 40%. В результате суммарная прибыль должна вырасти в 1,5 раза. Какова величина прибыли каждого из отделений: а) в минувшем году; б) в текущем году?

Решение.

Пусть  и - прибыли первого и второго отделений в минувшем году. тогда условие задачи можно записать в виде системы: Решив систему, получим   Следователь, а) прибыль в минувшем году первого отделения -4 млн. усл. ед., а второго – 8 млн. усл. ед.; б) прибыль в этом году первого отделения 1,7.4=6,8 млн. усл. ед., второго 1,4.8=11,2 млн. усл. ед.


2. Задания для самостоятельной работы.


2.1. Три завода выпускают четыре вида продукции. Необходимо: а) найти матрицу выпуска продукции за квартал, если заданы матрицы помесячных выпусков А1, А2, А3; б) найти матрицы приростов выпуска продукции за каждый месяц В1 и В2 и проанализировать результаты:


            ; ; .


2.2. Предприятие производит мебель трёх видов и продаёт её в четырёх регионах. Матрица  задаёт цену реализации единицы мебели i-го типа в j-м регионе. Определить выручку предприятия в каждом регионе, если реализация мебели за месяц задана матрицей .


2.3.  По условию задачи 2 определить:1) полные затраты ресурсов 3-х видов на производство месячной продукции, если заданы нормы затрат матрицей и объём выпуска каждого из двух типов продукции ;

2) стоимость всех затраченных ресурсов, если задана стоимость единиц каждого ресурса .


2.4.  В ремонтную мастерскую поступают телефонные аппараты, 70 % которых требуют малого ремонта, 20 % - среднего ремонта, 10% - сложного ремонта. Статистически установлено, что 10% аппаратов прошедших малый ремонт, через год требуют малого ремонта, 60% - среднего, 30% -сложного ремонта. Из аппаратов, прошедших средний ремонт, 20% требуют через год малого ремонта, 50% - среднего, 30% - сложного ремонта. Из аппаратов, прошедших сложный ремонт, через год 60% требуют малого ремонта, 40% - среднего. Найти доли из отремонтированных в начале года аппаратов, которые будут требовать ремонта того или иного вида: через 1 год; 2 года;3 года.




Практическое занятие.

Тема. Методы математического анализа для построения моделей СЭП.

Цель. Решение экономических задач с элементами моделирования, в которых применяются методы математического анализа.



1. Справочный материал.

 Функции находят широкое применение в экономической теории и практике. Спектр используемых в экономике функций весьма широк: от простейших линейных до функций, получаемых по определённому алгоритму с помощью рекуррентных соотношений, связывающих состояния изучаемых объектов в разные периоды времени.

Наиболее часто используемые в экономике следующие функции:

1.     Функция полезности (функция предпочтения) – зависимость результата, эффекта некоторого действия от уровня (интенсивности) этого действия.

2.     Производственная функция – зависимость результата производственной деятельности от обусловивших его факторов.

3.     Функция выпуска – зависимость объёма производства от наличия или потребления ресурсов.

4.     Функция издержек – зависимость издержек производства от объёма продукции.

5.     Функции спроса, потребления и предложения – зависимость объёма спроса, потребления или предложения на отдельные товары или услуги от различных факторов (например, цены, дохода и т.п.).

Учитывая, что экономические явления и процессы обуславливаются действием различных факторов, для их исследований широко используются функции нескольких переменных. Среди этих функций выделяют мультипликативные функции, позволяющие представить зависимую переменную в виде произведения факторных переменных, обращающих его в нуль при отсутствии действия хотя бы одного фактора.

Используются также сепарабельные функции, которые дают возможность выделить влияние различных факторов переменных на зависимую переменную, и в частности, аддитивные функции, представляющие одну и ту же зависимую переменную как при суммарном, но раздельном воздействии нескольких факторов, так и при одновременном их воздействии.

Кроме геометрического и механического существует ещё и экономический смысл производной. Во-первых, производная объема произведенной продукции по времени есть производительность труда в момент . Во-вторых, существует ещё одно понятие, характеризующее экономический смысл производной. Если издержки производства y рассматривать как функцию количества выпускаемой продукции x, - прирост продукции, - приращение издержек производства, а  - среднее приращение издержек производства на единицу продукции, тогда производная равная    выражает предельные издержки производства и характеризует приближённо дополнительные затраты на производство единицы дополнительной продукции.

Предельные издержки зависят от уровня производства (количества выпускаемой продукции) x и определяются не постоянными производственными затратами, а лишь переменными (на сырьё, топливо ит.п.). Аналогичным образом могут быть определены предельная выручка, предельный доход, предельный продукт, предельная полезность и др.предельные величины.

Предельные величины характеризуют не состояние, а процесс, то есть изменение экономического объекта. Таким образом, производная выступает как скорость изменения некоторого экономического объекта (процесса) по времени или относительно другого исследуемого фактора. Следует учесть, что экономика не всегда позволяет использовать предельные величины в силу неделимости многих объектов экономических расчётов и прерывности (дискретности) экономических показателей во времени (например, годовых, квартальных, месячных ит.д.). Вместе с тем в ряде случаев можно отвлечься от дискретности показателей и эффективно предельные величины.

Для исследования экономических процессов и решения прикладных задач часто используется понятие эластичности функции.

Эластичностью функции называется предел отношения относительного приращения функции y к относительному приращению переменной x при :

.        (1)

Эластичность функции показывает приближённо, на сколько процентов изменится функция y=f(x) при  изменении независимой переменной x на 1%. Это мера реагирования одной переменной величины на изменение другой.

Отметим свойства эластичности функции.

1. Эластичность функции равна произведению независимой переменной x на темп изменения функции , т.е. .

2. Эластичность произведения (частного) двух функций равна сумме (разности) эластичностей этих функций: ,   .

Эластичность функций применяется при анализе спроса и потребления. Например, эластичность спроса y относительно цены x – коэффициент, определяемый по формуле (1) и показывающий приближённо, на сколько процентов изменится спрос (объем потребления) при изменении цены (или дохода) на 1%.

Если эластичность спроса (по абсолютной величине) , то спрос считают эластичным, если - нейтральным, если  - неэластичным относительно цены (или дохода).

В практической деятельности часто приходится сталкиваться с такими задачам, которые рационально решать методами математического анализа. Это задачи на нахождение объёма продукции при известном значении прибыли, определении уровня потребления товаров при известном доходе, определение момента времени рентабельности производства, определение размеров вклада при известных начальных вложениях и т.п.


Задача 1. Издержки y (в руб.) на изготовление партии деталей определяются по формуле , где  - объём партии. Для первого варианта технологического процесса . Для второго варианта известно, что (руб.) при (дет.) и (руб.) при  (дет.). Провести оценку двух вариантов технологического процесса и найти себестоимость продукции для обоих вариантов при (дет.)

Решение.

Для второго варианта определяем параметры и из системы уравнений:

 откуда  и , т.е. .

Точка (х0,y0) пересечения двух прямых находится из системы их уравнений:

 откуда , .Очевидно, при объёме партии  выгоднее второй вариант технологического процесса, при  - первый вариант. Себестоимость продукции (руб.) при по первому варианту составляет , а по второму - .


Задача 2. Постоянные издержки  составляют 125 тыс.руб. в месяц, а переменные издержки - 700 руб. за каждую единицу продукции. Цена единицы продукции 1200 руб. Найти объём продукции , при котором прибыль равна: а) нулю (точка безубыточности); б) 105 тыс.руб. в месяц.

Решение:

а) Издержки производства  единиц продукции составят: (тыс.руб.). Совокупный доход (выручка) от реализации этой продукции , а прибыль  (тыс.руб.). Точка безубыточности, в которой , равна (ед.).

б) Прибыль (тыс.руб.), т.е.  при (ед.).


Задача 3. Продолжительность выполнения  (мин.) при повторных операциях связана с числом  этих операций зависимостью . Вычислить, сколько минут выполняется работа при 50 операциях, если известно, что при   , а при   .

Решение. Найдём параметры и , учитывая, что , . Получаем систему:    решая которую найдём , .

Итак,  при , (мин.)


Задача 4. Объём продукции u, произведённый бригадой рабочих, может быть описан уравнением (ед.), , где t – рабочее время в часах. Вычислить производительность труда, скорость и темп её изменения через час после начала работы и за час до её окончания.

Решение. Производительность труда выражается производной  (ед./час), а скорость и темп изменения производительности – соответственно производной и логарифмической производной :       (ед./ч2),

 (ед./ч).

В заданные моменты времени  и  соответственно имеем: z(t)=112,5 (ед./ч), z’(t)=-20(ед./ч2),  Tz(7)=-0,24 (ед./ч).

Итак, к концу работы производительность труда существенно снижается; при этом изменение знака z’(t) и Tz(t) с плюса на минус свидетельствует о том, что увеличение производительности труда в первые часы рабочего дня сменяется её снижением в последние часы.


Задача 5. Опытным путём установлены функции спроса  и предложения , где q и  sколичество товара, соответственно покупаемого и предлагаемого на продажу в единицу времени, p – цена товара.

Найти: а) равновесную цену, т.е.цену при которой спрос равен предложению;

б) эластичность спроса и предложения для этой цены;

в) изменение дохода при увеличении цены на 5% от равновесной.

Решение. а) Равновесная цена находится из условия q=s, тогда , откуда p=2, т.е равновесная цена 2 ден.ед.

б) Найдём эластичность по спросу и предложению по формуле (1)

.

;      . Для равновесной цены p=2 имеем ; . Так как полученные значения эластичностей по абсолютной величине меньше 1, то и спрос и предложение данного товара при равновесной (рыночной) цене неэластичны относительно цены. Это означает, что изменение цены не приведёт к резкому изменению спроса и предложения. Так, при увеличении цены p на 1% спрос уменьшится на 0,3%, а предложение увеличится на 0,8%.

в) При увеличении цены p на  5% от равновесной спрос уменьшится на 5.0,3=1,5%, следовательно, доход возрастёт на 3,5%.


Задача 6. Зависимость между издержками производства y и объёмом выпускаемой продукции x выражается функцией (ден.ед.). Определить средние и предельные издержки при объёме продукции 10 ед.

Решение. Функция средних издержек выражается соотношением ; при x=10 средние издержки (на единицу продукции) равны (ден. ед.). Функция предельных издержек выражается производной ; при x=10 предельные  издержки составят  (ден.ед.). Итак, если средние издержки на производство единицы продукции составляют 45 ден.ед., то предельные издержки, т.е. дополнительные затраты на производство дополнительной единицы продукции при данном уровне производства (объёме выпускаемой продукции 10 ед.) , составляют 35 ден.ед.


Задача 7. Выяснить, чему равны предельные и средние полные затраты предприятия, если эластичность полных затрат равна 1?

Решение. Пусть полные затраты предприятия y выражаются функцией , где x – объём выпускаемой продукции. Тогда средние затраты y1 на производство единицы продукции .  Эластичность частного двух функции равна разности их эластичностей, т.е. .

По условию , следовательно, . Это означает, что с изменением объёма продукции средние затраты на единицу продукции не меняются, т.е., откуда .

предельные издержки предприятия определяются производной . Итак,  т.е предельные издержки равны средним издержкам(полученное утверждение справедливо только для линейных функций издержек).


2. Задания для самостоятельной работы.

2.1. Издержки перевозки  двумя видами транспорта выражаются уравнениями: и  , где  - расстояния в сотнях километров, - транспортные расходы. Начиная с какого расстояния более экономичен второй вид транспорта?

2.2. Зная, что изменение объёма производства  с изменением производительности труда  происходит по прямой линии, составить её уравнение, если при =3 =185, а при    =5      =305. Определить объём производства при =20.

2.3. Предприятие купило автомобиль стоимостью 150 тыс.руб. Ежегодная норма амортизации составляет 9%. Полагая зависимость стоимости автомобиля от времени линейной, найти стоимость автомобиля через 4,5 года.

2.4.  Зависимость уровня потребления     некоторого вида товаров от уровня дохода семьи  выражается формулой: . Найти уровень потребления товаров при уровне дохода семьи 158 ден.ед. Известно, что при =50  =0;   =74   =0,8;   =326 =2,3.

2.5. Банк выплачивает ежегодно 5% годовых (сложный процент). Определить: а) размер вклада через 3 года, если первоначальный вклад составил 10 тыс. руб.; б) размер первоначального вклада, при котором через 4 года вклад (вместе с процентными деньгами) составит 10 000 руб.

Указание. Размер вклада через t лет определяется по формуле , где p-процентная ставка за год, Q0 –первоначальный вклад.

2.6. Затраты на производство продукции (тыс.руб.) выражаются уравнением , где  -количество месяцев. Доход от реализации продукции выражается уравнением . Начиная с какого месяца производство будет рентабельным?

2.7.  Зависимость между себестоимостью единицы продукции y (тыс. руб.) и выпуском продукции x (млрд.руб.) выражается функцией . Найти эластичность себестоимости при выпуске продукции, равном 60 млрд.руб.





Практическое занятие.

Тема. Предельный анализ экономических процессов.

Цель. Рассмотреть применение математических методов для нахождения предельных величин в оптимизационных задачах.

1.Справочный материал.

Функция издержек С(х) определяет затраты, необходимые для производства x единиц данного продукта. Прибыль , где D(x)- доход от производства x единиц продукта.

Средние издержки A(x) при производстве x единиц продукта есть .Предельные издержки .

Оптимальным значением выпуска для производителя является то значение x единиц продукта, при котором прибыль P(x) оказывается наибольшей.

Задача 1. Функция издержек имеет вид . На начальном этапе фирма организует производство так, чтобы минимизировать средние издержки A(x). В дальнейшем на товар устанавливается цена, равная 4 усл.ед. за единицу. На сколько единиц товара фирме следует увеличить выпуск?

Решение. Средние издержки  принимают минимальное значение при x=10. Предельные издержки . При установившейся цене  оптимальное значение P(x) выпуска задаётся условием максимизации прибыли: , т.е. 4=M(x), откуда . Таким образом, производство следует увеличить на 10 единиц.

Задача 2. Определить оптимальное для производителя значение выпуска x0, при условии, что весь товар реализуется по фиксированной цене за единицу p=14 , если известен вид функции издержек .

Решение. По формуле прибыли получаем, .

Находим производную прибыли по объёму: , тогда  хопт=2.

Задача 3. Найти максимальную прибыль, которую может получить фирма производитель, при условии, что весь товар реализуется по фиксированной цене за единицу р=10,5 и функция издержек имеет вид .

Решение.  Находим значение прибыли .

Производная прибыли по объёму имеет вид: . Тогда , . .

 

2.  Задания для самостоятельной работы.

2.1 Определить оптимальное для производителя значение выпуска x0, при условии, что весь товар реализуется по фиксированной цене за единицу p=8 и известен вид функции издержек .

2.2 Найти максимальную прибыль, которую может получить фирма-производитель, при условии, что весь товар реализуется по фиксированной цене за единицу p =40 и известен вид функции издержек .

2.3 При производстве монополией x единиц товара за единицу . Определить оптимальное для монополии значение выпуска x0 (предполагается что весь произведённый товар реализуется), если издержки имеют вид .

2.4 Функция издержек имеет вид . Доход от реализации единицы продукции равен 50. Найти максимальное значение прибыли, которое может получить производитель.

2.5 На начальном этапе производства фирма минимизирует средние издержки, причём функция издержек имеет вид .  В дальнейшем цена на единицу товара устанавливается равной р=37. На сколько единиц товара фирме следует увеличить выпуск? На сколько при этом изменятся средние издержки?



Задания для контрольной работы.

Задача 1.

Даны зависимости спроса D(p) и предложения S(p) от цены.

Найдите: 1) равновесную цену и выручку при равновесной цене;

                 2) цену, при которой выручка максимальна и саму эту 

                     максимальную выручку.

Построить график зависимостей.


Задача 2.

Рассматривается рынок с тремя участниками, у каждого из которых одна и та же функция полезности . Пусть начальное имущество 1-го, 2-го и 3-го участников заданы векторами, а цены на рынке таковы р=1, р=2, р=3.

Проверить: 1) равновесно ли положение;

                     2) выполняется ли закон Вальраса об избыточном спросе:  

                          P.I(p)=0

Задача 3.

Пусть модель Леонтьева задана матрицей А.

Найти объем производства, обеспечивающий вектор потребления У.



№ варианта

1 задание

2 задание

3 задание

1

D=1000-10p

S=100+10p

(3,2,3),  (2,4,6),  (6,4,6)

2

D=800-10p

S=200+10p

(2,2,3), (2,4,5),  (6,6,6)

3

D=1000-20p

S=70+10p

(2,4,3), (2,3,4),  (4,4,5)

4

D=400-20p

S=70+10p

(4,2,3),  (2,5,4),  (3,4,7)

5

D=600-8p

S=120+8p

(5,2,3),  (2,5,4,),  (5,4,5)

6

D=400-5p

S=100+5p

(6,2,3),  (2,3,6), (3,6,5)

7

D=500-5p

S=50+5p

(4,2,3), (4,3,4), (4,4,5)

8

D=200-10p

S=35+5p

(4,2,3),   (5,3,4), (6,4,2)

9

D=500-10p

S=50+5p

(3,2,3), (4,3,4),  (3,5,2)

10

D=300-4p

S=60+4p

(3,2,3), (2,4,6),  (6,4,6)

11

D=600-8p

S=120+8p

(2,2,3), (2,4,5),  (6,6,6)

12

D=400-5p

S=100+5p

(2,4,3),  (2,3,4), (4,4,5)

13

D=1000-10p

S=100+10p

(2,4,3), (2,3,4), (4,4,5)

14

D=1000-20p

S=70+10p

(2,2,3), (2,4,5), (6,6,6)

15

D=800-10p

S=200+10p

(4,2,3),  (2,5,4),  (3,4,7)

16

D=400-20p

S=70+10p

(4,2,3), (4,3,4),

     (4,4,5)

17

D=500-5p

S=50+5p

(3,2,3), (4,3,4),

    (3,5,2)

18

D=200-10p

S=35+5p

(3,2,3), (2,4,6),

     (6,4,6)

19

D=300-4p

S=60+4p

(2,2,3), (2,4,5),

      (6,6,6)



Страницы: 1, 2