бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Анализ ошибок заочной математической школы бесплатно рефераты

Задача 2-6. Сколько существует семизначных чисел, цифры которых идут в убывающем порядке?

Рассуждения ученика: всё решение сводится к указанию того факта, что семизначных чисел столько же, сколько трехзначных с соответствующим убывающим порядком цифр. Отсутствует доказательство этого факта.

Анализ ошибки: Стоит упомянуть то, что перед данной задачей разобрана следующая : сколько существует восьмизначных чисел, цифры которых идут в убывающем порядке? Подробно рассмотрено решение, суть которого состоит в установлении взаимнооднозначного соответствия между восьмизначными и двузначными числами. Количество двузначных чисел нам уже известно. Авторы хотели тем самым дать образец решения. Хорошо выделили этапы доказательства: каждому двузначному сопоставлено ровно одно восьмизначное; каждому восьмизначному сопоставлено ровно одно двузначное; установлено взаимноооднозначное соответствие, следовательно, и тех и других чисел одинаковое число. Предполагалось, что школьники будут действовать аналогично. Действительно, многие ученики привели полностью обоснованное решение, но есть и те, кто не написал его, посчитав излишним приводить обоснования, аналогичные изложенным в методическом пособии. Необязательно требовать от ученика полностью приводить все доказательство, но в чем отличие рассуждений с семизначными числами от рассуждений с восьмизначными и почему действия будут аналогичными – ученик должен написать. Иначе это – необоснованная аналогия и решением не является. Одного ответа в данной задаче недостаточно, ученик должен понимать суть подсчета и уметь его осуществлять в подобных ситуациях. Ссылаться на соответствующий результат можно лишь после того, как показано, что решение при этом будет действительно аналогичное. Для убедительности надо привести задачу, в которой действия по аналогии приводят к неверному ответу. Можно привести задачу на поиск количества девяток в числах от 1 до 100. Рассуждаем следующим образом. От 1 до 10 – одна девятка, от 11 до 20 также – одна, получается в каждом десятке по одной девятке. Так как десятков десять, то девятка в числах от 1 до 100 встречается 10 раз. Все вроде бы верно, за исключением того, что в каждом числе от 90 до 99 включительно девятка встречается еще и в разряде десятков (в других десятках она встречается лишь в разряде единиц), поэтому аналогия на этот десяток неверная. В результате вместо верного результата 20 мы получили всего лишь 10.

На таких, очевидных с виду задачах, подобных задаче 2-6, и нужно развивать умение строго обосновывать каждый шаг в рассуждениях.

Задача 3-5. б) Четыре футбольных команды A, B, C и D, провели друг с другом несколько тренировочных матчей. Известно, что команда A участвовала в 6 матчах, команда B – в 5, C – в 7, D – в 10. Сколько всего состоялось матчей?

в) Три футбольных команды, A, B и C провели друг с другом несколько тренировочных матчей. Известно, что команда A участвовала в 6 матчах, команда B – в 7 матчах, а команда C – в 11 матчах. Сколько матчей сыграли друг с другом команды A и C?

Рассуждения ученика сводятся к рассмотрению конкретных графов, иллюстрирующих турнир. Подсчитав количество матчей, он дает ответ.

Анализ ошибки: Нет гарантий, что при построении другого графа ответ будет таким же. Это необоснованное обобщение в многих случаях приводит к неполному ответу. Приведем конкретный пример.

Возьмем 4 команды. A сыграла одну игру, B – две, C – три, D – две. Сколько игр сыграли между собой команды B и C? Понятно, что ответ неоднозначен. Может быть две игры, может быть одна.

Пусть теперь ученик докажет, что в его задаче такая ситуация не возникнет. Это подтолкнет его к рассуждениям в общем виде, и не стоит на этом этапе писать подсказки, которые лишают ученика возможности самостоятельного решения задачи. Ученик должен сам дойти до сути, в этом состоит один из главных принципов обучения в ВЗМШ.

Задача 3-6. Можно ли устроить такой турнир, чтобы в нем:

а) участвовало 13 команд, и каждая команда сыграла ровно 5 матчей;

б) участвовало 10 команд, и каждая команда сыграла бы ровно 5 матчей;

в) участвовало 9 команд, и каждая команда сыграла бы 4 матча?

Рассуждения ученика: а) так как каждая команда сыграла 5 матчей, то всего было  игр, то есть не целое число. Но в любом турнире всегда количество игр – целое число. Приходим к противоречию. Следовательно турнир устроить нельзя.

б) Подсчитаем количество игр:  – целое число. Значит турнир устроить можно.

в) Подсчитаем количество игр:  – целое число. Значит турнир устроить можно.

Анализ ошибки: В рассуждениях пункта а) никаких замечаний нет. Действительно, в любом турнире число игр целое (*). Есть сомнения в пунктах б) и в). Ученик использует утверждение, обратное (*): если при подсчете количества игр мы получаем целое число, то турнир можно устроить. На самом деле это утверждение не такое уж и очевидное и требует доказательства. Ошибка: использование вместо теоремы обратного к ней утверждения. Приведем пример того, что при выполнении прямого утверждения обратное ему не всегда выполняется:

Можно ли для пяти команд устроить турнир в один круг так, чтобы четыре из них сыграли бы по четыре игры, а одна – две?

Понятно, что такой турнир устроить нельзя. Если четыре команды сыграют по четыре игры, то и пятая при этом должна будет сыграть тоже четыре. Число игр при этом – целое число. Этот пример ясно показывает, что обратное утверждение не всегда верно.

Задача 3-8а. На окружности выбраны 10 точек. Сколько существует выпуклых четырехугольников с вершинами в этих точках?

1) Рассуждения ученика: У нас имеется десять точек, пронумеруем их от 0 до 9. Тогда каждому четырехзначному числу будет соответствовать ровно один четырехугольник. Значит четырехугольников столько же, сколько четырехзначных чисел с различными цифрами, а их 10×9×8×7=40320.

Анализ ошибки: Школьник хотел использовать для решения задачи взаимнооднозначное соответствие, но при этом установил его неправильно. Верно замечено, что каждому четырехзначному числу соответствует ровно один четырехугольник. Для взаимнооднозначного соответствия еще требуется, чтобы каждому четырехугольнику соответствовало ровно одно число, а их 4!=24. О биекции и речи быть не может. К примеру, числам 1234, 2341, 3412, 4123, 4321, 3214, 2143, 1432 соответствует один и тот же четырехугольник «1234». Мало того, кроме выпуклых четырехугольников были подсчитаны самопересекающиеся «1342» и «1324» (это причина действия стереотипа, формирующегося в школе, так как школьники в основном работают только с выпуклыми фигурами), каждый из которых может быть представлен восемью различными четырехзначными числами.

Причина ошибки: ученик просмотрев лишь несколько четырехугольников, сопоставив ему четырехзначное число, сделал вывод о взаимнооднозначности двух множеств. Данная ошибка – своего рода аналог ошибки «замена прямой теоремы обратной». Если проверена однозначность соответствия в одну сторону, то в обратную сторону соответствие автоматически считается однозначным. Это не верно. Примеры хорошо опровергают такие рассуждения.


Целые числа. Задания №3, 4.

§1.

Задача 1. Выяснить, какие из следующих утверждений верны, а какие – нет:

б) если a и b не делятся на 6, то a+b не делится на 6;

г) если a делится на 6, b не делится на 6, то ab не делится на 6;

д) если a делится на 6, b делится на 10, то ab делится на 60.

Рассуждения ученика: в решениях всех пунктов используется один и тот же метод. Утверждение проверяется лишь для конкретной пары чисел, удовлетворяющей условиям задачи. Результат проверки служит ответом.

Анализ ошибки: Выделим три случая: 1) при проверке для конкретной пары чисел утверждение неверно; 2) при проверке для конкретной пары чисел утверждение верно, но существуют пары чисел, при которых утверждение ложно; 3) при проверке для конкретной пары чисел утверждение верно и для остальных пар чисел оно также выполняется. Получается, что в первом и втором случаях утверждение неверное, а в третьем – верное. Ученики лучше всего действуют в первом случае, так как им легче оперировать конкретными числами. От них требуется лишь подобрать опровергающий пример. Если же все рассмотренные примеры подтверждают утверждение, но перебраны не все возможные случаи, что для бесконечного их множества просто невозможно, то нет гарантии, что это третий случай, а не второй. Поэтому требуются работать с классом чисел, в связи с этим возникают трудности представления в общем виде.

Все выше сказанное подтверждается в решениях школьников.

В пунктах б) и г) ученик находит пару чисел, при которых условие не выполняется, и делает правильный вывод, что утверждение не верно. В пункте д) также рассматривается одна или две пары a и b, для которых конечно же все справедливо. Делается вывод о выполнении утверждения для всех остальных чисел, то есть производится незаконное обобщение.

Стоит отметить следующий момент: в отличие от пунктов б) и г), где приводится одна пара чисел, в пункте д) ученики, как правило, рассматривают несколько пар чисел. Они понимают, что недостаточно рассмотрения конкретных чисел. Но рассмотреть все пары чисел невозможно, и они ограничиваются несколькими. Значит основная проблема состоит в переходе от конкретных чисел, обладающих определенным свойством, к классу, как объекту. Школьник не может представить класс в алгебраическом виде. Задача проверяющего – помочь ему в этом. На самом деле в методическом пособии приведено определение делимости, из которого можно понять, как представить класс чисел, делящихся на конкретное число, в общем виде. Конкретных примеров представления нет. Поэтому можно дать такой комментарий: «В пункте д) Вами был рассмотрен лишь частный случай. Выполнимость утверждения для всех оставшихся пар чисел (а их достаточно много) остается под вопросом. Чтобы проверить ее, необходимо рассуждать в общем виде. Скажем, число a, которое делится на 6 можно записать, как 6k, где k – некоторое целое число.»

Задача 2. Докажите утверждения:

г) если  и , то .

д) если , то .

г) Рассуждения учеников: Так как , то либо  либо . Дальше рассматриваются эти варианты и отдельно для каждого доказывается, что .

Анализ ошибки: Это типичный неполный перебор, рассмотрены не все варианты, а конкретно – не рассмотрен вариант, когда a и b не делятся на c. Ученик не учел случай, когда c представляется в виде произведения двух множителей, на один из которых делится a, на другой делится b. Причина ошибки – отождествление в сознании ученика делителя с простым числом и использование соответствующих свойств. Это обобщение свойств простого числа на все числа легко опровергается контрпримером: a=3, b=6, c=9. Понятно, что при этом , но ни a и ни b на c не делятся.

д) Рассуждения учеников: Так как  и , то .

Анализ ошибки: В методическом пособии выделено несколько свойств делимости целых чисел. Одно из них формулируется следующим образом: если a и b делятся на c, то a+b и a-b делятся на c. Ученик воспользовался этим свойством, но неправильно, он его изменил: если c делится на a и на b, то c делится на a+b и на a-b (*). Причина в следующем: делимость – антисимметричное бинарное отношение. В школе ученики встречались лишь с равенством (симметричным отношением) и только начинают подробно изучать отношение порядка. Не удивительно, что они путают числа, которые делятся, и числа, на которые делятся. Единственное правило на первых этапах изучения делимости – внимательно применять свойства при решении задач. Для опровержения данного свойства (*) достаточно привести контрпример: 10 делится на 5 и на 2, но на 3 число 10 не делится. Для того, чтобы ученики лучше понимали суть делимости чисел и свойств, рекомендуется самостоятельно доказать некоторые из них, приведенные в пособии.

Задача 5-в. При каких n 3n2+2n+2 делится на 4n+3.

Рассуждения ученика: Так как , то и  или  Þ  Þ .

Если n = – 1, то 4n+3 = – 1, и .

Если n = 0, то 4 – n  не делится на 4n+3.

Если n=1, то 4 – n  не делится на 4n+3.

Если n = 4, то .

Ответ: n = – 1.

Анализ ошибки: В рассуждениях нет логики, ученик рассматривает лишь некоторые n. Как обстоит дело с оставшимися числами – неизвестно. Это неполный перебор. Школьник пытался рассуждать по аналогии с примером, разобранном в методическом пособии ([9], с. 5), но не довел решение до конца, не сделав последний шаг:  Þ  Þ . Сейчас остается рассмотреть четыре случая 4n+3 = 19; 1; –1; –19. Других вариантов нет.

Задача 3. Докажите, что сумма 2n+1 последовательных натуральных чисел делится на 2n+1.

Рассуждения ученика:

1+2+3+…+(2n+1)=(1+2n+1)(2n+1)/2=(n +1)(2n+1) делится на 2n+1.

Анализ ошибки: Рассмотрен частный случай. На его основе проведено необоснованное обобщение выполнения свойства для всех остальных последовательностей. Хотя в данном случае рассуждения и будут аналогичные, но ведь это надо еще показать. Тем более, что можно привести пример, когда для нескольких частных случаев свойство выполняется, а в общем не верно.

Например: (n+1)(n+2)(n+3)(n+4) делится на 120 при n=1, 2, 3, 4, а вот при n=5 выражение (n+1)(n+2)(n+3)(n+4) = 6×7×8×9 на 120 уже не делится.

Задача 4. Остаток от деления нечетного числа на 7 равен 2. Найдите остаток от деления этого числа на 14.

Рассуждения ученика: 9 = 7 × 1 + 2. 9 = 14 × 0 + 9. Остаток равен 9.

Анализ ошибки: Это типичная ошибка при решении задач на делимость: необоснованное обобщение. Ученик рассмотрел лишь одно число, удовлетворяющее условиям. При каком-то другом числе может получиться остаток, отличный от 9. Недостаточно найти правильный ответ, надо еще доказать , что все остальные будут неправильными.

В задачах на делимость есть два наиболее часто употребляемых метода решения:

1) разбиение общей задачи на несколько частных (дизъюнкция). При этом нужно следить за тем, чтобы все случаи (задачи) были разобраны. Если какой-то из них не рассмотрен, то метод теряет свою суть и решение считается неверным. Неполный перебор часто встречается в работах школьников.

2) решение в общем виде. Нелегко дается учениками, так как им легче оперировать с конкретными объектами. Этот метод хорош тем, что исключает потерю части решения. Большинство свойств доказывается именно в общем виде. При его использовании происходит абстрагирование, частные характеристики объектов не учитываются, рассуждения опираются на общие свойства данного класса объектов. Красота метода в том, что, работая с одним объектом, мы тем самым охватываем весь класс. Но это одновременное оперирование всеми объектами сразу и отталкивает детей с их конкретным мышлением. В действительности же, представив число в общем виде, он работает с ним, как с конкретным числом, ничего принципиально нового нет. Задачи на делимость – это благодатная среда для обучения абстрагированию: рассуждения в общем виде здесь не очень сложны и в то же время достаточно ярко показывают эффективность данного метода.

Чтобы ученик действительно понял преимущество решения в общем виде, разберем решение конкретной задачи двумя методами.

Задача: При делении на 5 число дает остаток 3. Какой остаток дает число при делении на 15?

1) Решение перебором. При делении на 15 могут получиться следующие остатки: 0, 1, …, 14. Если остаток равен

0: то при делении на 5 будет остаток 0 ¹ 3;

1: то при делении на 5 будет остаток 1 ¹ 3;

2: то при делении на 5 будет остаток 2 ¹ 3;

3: то при делении на 5 будет остаток 3 = 3;

4: то при делении на 5 будет остаток 4 ¹ 3;

5: то при делении на 5 будет остаток 0 ¹ 3;

6: то при делении на 5 будет остаток 1 ¹ 3;

7: то при делении на 5 будет остаток 2 ¹ 3;

8: то при делении на 5 будет остаток 3 = 3;

9: то при делении на 5 будет остаток 4 ¹ 3;

10: то при делении на 5 будет остаток 0 ¹ 3;

11: то при делении на 5 будет остаток 1 ¹ 3;

12: то при делении на 5 будет остаток 2 ¹ 3;

13: то при делении на 5 будет остаток 3 = 3;

14: то при делении на 5 будет остаток 4 ¹ 3;

Получается, что существует три варианта остатка: 3, 8, 13.

2) Решение в общем виде. Так как при делении числа a на 5 остаток равен 3, то его можно записать в виде а = 5k + 3. Пусть остаток от деления числа a на 15 равен b, тогда a = 15n + b, где 15 ³ b > 0.

Страницы: 1, 2, 3, 4