бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Петромагнетизм континентальной литосферы и природа региональных магнитных аномалий - (реферат) бесплатно рефераты

p>[Геншафт и др. , 1995; Петромагнитная модель.... , 1994]. Ксенолиты из кимберлитовых трубок Якутии представляют собой породы метаморфических толщ, входящих в состав фундамента Анабарского щита, и являются примером "беститаномагнетитовой" первично-магматической рудной минерализации. Очевидно, этот процесс был характерен для формирования архейской земной коры. В отличие от других рассмотренных коллекций ксенолитов, отобранных из молодых вулканитов, возраст кимберлитовых трубок Якутии преимущественно девонский. Породы после формирования кимберлитовых тел подверглись в приповерхностных условиях гидротермально-метасоматическим изменениям, выраженные в карбонатизации, серпентинизации, хлоритизации, что сказалось в нарушении баланса вещества, в частности, выносе кремния, железа, привносе калия, кальция, относительном обогащении титаном и магнием и понижении железистости. По соотношению минеральных фаз изученные ксенолиты делятся на три группы: 1 - породы отчетливо магматического генезиса, габбро (серпентинизированные и карбонатизированные), пироксениты (серпентинизированные), диориты (слабо затронуты вторичными изменениями), горнблендиты; 2 - безгранатовые породы гранулитовой фации метаморфизма, пироксеновые и амфиболовые плагиогнейсы, биотит-амфиболовые сланцы и амфиболиты, пироксен-амфиболовые сланцы; 3 - эклогитизированные породы гранулитовой фации метаморфизма, плагиоклазовые породы с гранатом и пироксеном, амфибол-пироксен-гранатовые сланцы, пироксен-гранатовые сланцы. По содержаниям железа и титана породы групп 2 и 3 практически не различимы, отражая "память" об их первично-магматическом происхождении. В общем, ксенолиты Якутии представлены, главным образом, продуктами дифференциации базальтовой магмы (рис.  6). "Сдвиг" в сторону кумулятивных тенденций связан с упомянутыми выше вторичными изменениями в составе пород. По составу рудных минералов изученные образцы делятся на 4 группы: 1 - Гемоильменитовая. Есть сохранившиеся гомогенные зерна, и есть - их большинство - распавшиеся на ильменит+высокотитановый титаномагнетит+магнетит; судя по средним составам сростков гемоильменита и титаномагнетита температура их образования по термометру Линдсли близка 1400oС, fO2 близка буферу QMF, что, очевидно, отвечает режиму в магме в начале ее кристаллизации, температура образования продуктов распада гемоильменита и титаномагнетита - 800-1200oС. 2 - Титаномагнетит+ильменит. В большинстве случаев это продукты распада и перекристаллизации гемоильменита первой группы, температура образования этой ассоциации зерен 700-1000oС. 3 - Ильменит+магнетит. Основной рудный - ильменит ( x =0, 93), появляются обособленные крупные зерна магнетита, температура образования сростков ильменита и магнетита меньше 600oС. 4 - Первично-немагнитная группа образцов. Встречается только заведомо вторичный магнетит, чаще мелкозернистый. Основной магнитной фазой в ксенолитах является магнетит. Кроме того, выделяются гемоильменит ( Tc =100-200oС), титаномагнетиты ( Tc =200-450oС) - продукты гетерофазного окисления гемоильменита. Величина Js меняется от ~0, 01 до 15 Ам2/кг, мода приходится на интервал 0, 1-1, 0 Ам2/кг. Метаморфические породы более магнитны, чем породы, сохранившие первичные структуры, их средние Js =1, 16 Ам2/кг (0, 05-15) и Js =0, 59 Ам2/кг (0, 02-5, 8) соответственно. Это связано с появлением вторичного магнетита. Наложенные процессы карбонатизации мало меняют исходную намагниченность. В эклогитизированных породах намагниченность заметно падает: средняя Js =0, 5 Ам2/кг. Зерна относительно крупные, тогда как преобладающая часть зерен магнетита относительно мелкие. Согласно магнитного термометра Шолпо-Лузяниной [Шолпо, 1977], в гемоильменитовой группе образцов подавляющая часть зерен образовалась не ниже 600oС; в группе титаномагнетит+ильменит магнитномягкие зерна образовались ниже точки Кюри магнетита, более жесткие - выше точки Кюри магнетита; в группе ильменит+магнетит и первично-немагнитной группе почти весь магнетит образовался ниже его точки Кюри. Магнетита больше в анизотропных амфиболсодержащих гнейсах и сланцах, у рассланцованных пород анизотропия магнитной восприимчивости в среднем равна 1, 22, тогда как у пород магматического генезиса - 1, 08. В процессе карбонатизации и серпентинизации более ранний магнетит или уничтожается или существенно переработан, преобладает поздний (послестрессовый) магнетит, в результате средняя анизотропия таких образцов 1, 07.

    Рис. 9
    Рис. 10

По составам различных ассоциаций минералов оценены P-T условия образования различных парагенезисов (рис.  9). Согласно этим данным, в истории глубинных пород можно выделить несколько этапов. Первоначально они образовались как магматические породы малоглубинной кристаллизационной дифференциации в условиях летучести кислорода близ буфера QMF (рис.  10). При снижении температуры, начиная с 1300oС и до 950oС, происходит гетерофазное окисление первичных гемоильменита и титаномагнетита при возрастающей летучести кислорода до буфера Ni-NiO (рис.  10). Минеральные ассоциации пород указывают на существенную переработку первично-магматических пород в гранулитовой фации метаморфизма. По существующим минералогическим геотермобарометрам гранулитовые ассоциации образовались при температуре 650-870oС и давлении 5-10 кбар. Учитывая, что давление было направленным (во всяком случае, на стадии кристаллизации анизотропного магнетита), истинная глубина метаморфизма была, вероятно, меньше 25 км. В этих условиях происходил дальнейший распад гемоильменита и титаномагнетита с образованием ассоциации титаномагнетитов разного состава и ильменита. Охлаждение пород в условиях повышения летучести кислорода привело к образованию ассоциации ильменита и магнетита. Итак, данный пример, с одной стороны, демонстрирует очевидность вторичного образования источников региональных магнитных аномалий в результате перекристаллизации гемоильменита, ильменита, характерного для архейских вулканитов, в магнитные минералы в глубинных условиях, с другой - не противоречит главной концепции образования магнитных пород за счет кристаллизации или последующей перекристаллизации первично-магматических Fe-Ti рудных минералов. Остров Росс (Антарктида).

[Warner and Wasilewski, 1995]. Это район континентального рифтинга, высокого теплового потока, утонения земной коры. Изучены ксенолиты из кайнозойских вулканов острова: дуниты, пироксеновые гранулиты и горнблендит. Среди ксенолитов региона из верхней части коры преобладают практически немагнитные граниты, гранитогнейсы [Behrendt et al. , 1991]. Пироксеновые гранулиты представляют нижнюю часть коры, они состоят из первичных минералов: плагиоклаза, пироксена, оливина и ильменита (до 3%). Помимо крупных зерен первичного ильменита, отмечены выделения мелкого ильменита по амфиболу (распад). Температура кристаллизации пар орто- и клинопироксена 736-994oС. Судя по средним составам сосущестувующих ильменита и титаномагнетита (термометр Линдсли), температура их кристаллизации 720-830oС. Эти температуры, очевидно, отражают температуру начала гетерофазного окисления ильменита. Согласно минеральным равновесиям оливина и пироксенов, ксенолиты пироксеновых гранулитов пришли с глубины 12-20 км. Во всех гранулитах отмечается вторичная минерализация, главный вторичный минерал - амфибол. Другой вторичный минерал - биотит, обычно ассоциирует с амфиболом. По зернам ильменита образуется вторичный титаномагнетит. Часто отмечаются признаки подплавления, во многих гранулитах с участками подплавления связано обогащение Fe-Ti-окислами, в основном, высокотитановым титаномагнетитом, последний, в свою очередь, подвергается гетерофазному окислению. Подчеркивается, что участки подплавления, богатые рудными, типичны для богатых ильменитом гранулитов, тогда как в гранулитах, не содержащих первичных Fe-Ti-окислов, участки подплавления не содержат рудных или содержат очень мало рудных, на таких участках кристаллизуется оливин. Намагниченность гранулитов широко варьирует ( k от 0, 28 до 36, 7 10-3 ед. СИ, Jn от 0, 23 10-4 до 90, 2 10-4 Ам2/кг), из них наиболее магнитны подплавленные гранулиты. В целом, намагниченность гранулитов заметно меньше вмещающих их лав, а у части образцов даже ниже, чем у верхнекоровых гранитов и гранитогнейсов. Обнаружена определенная корреляция между содержанием рудных минералов и, соответственно, магнитной восприимчивостью, и содержанием железа в пироксенах всех ксенолитов и прежде всего - в гранулитах. Этот факт свидетельствует против связи этой корреляции с процессом метаморфизма, но за первично-магматическое распределение железа в процессе дифференциации расплава с образованием низкожелезистых кумулятов и высокожелезистых дифференциатов. Образцы дунитов состоят преимущественно из зерен оливина разного размера, в которых встречаются зерна хромита, большинство которых ассоциируют с подплавлением. В образце подплавленного дунита встречены единичные зерна магнезиоферрита. Температура кристаллизации оливина-хромита 1012-1106o С. Такая температура, согласно геотермическому градиенту в районе, соответствует верхам мантии. По геофизическим данным глубина границы Мохо в регионе 20-23 км. Появление хромита и отсутствие граната говорит, что дуниты пришли с глубины не более 45 км. Дуниты слабомагнитны ( k
    Алданский щит.

[Баженова и др. , 1998, 2000]. Алданский щит представляет собой сложную структуру с длительной историей развития магматизма, прогрессивного и регрессивного метаморфизма слагающих его пород архейского и протерозойского возраста. Наиболее древними являются купольные структуры, внутренние части которых сложены в различной степени амфиболизированными и гранитизированными метабазитами (главным образом, пироксениты) и эндербитами, метаморфизованными в условиях гранулитовой фации метаморфизма, возраст эндербитов 3, 6 млрд лет. Внешние части куполов образуют линейно вытянутые пояса, которые сложены более молодыми породами - гранитогнейсами, эндербитами, метабазитами (метагаббро, амфиболиты, пироксен-амфиболовые, биотит-амфиболовые кристаллические сланцы), а так же глиноземистыми и карбонатными породами, метаморфизованными в условиях амфиболитовой фации. Возраст этого комплекса 3, 3-3, 1 млрд лет [Глуховский и др. , 1993]. На архейский фундамент наложены троговые структуры, сложенные в основном амфиболитами и метабазитами, гранитогнейсами. Возраст троговых структур 3, 1-2, 9 млрд лет. Проведено комплексное геолого-петромагнитное изучение образцов из центральных, краевых и внешних частей ряда куполов (главным образом, из Центрально-Алданского, Чарского, Суннагинского), а так же из наложенных трогов. Более детально изучены магнитные метабазиты.

    Рис. 11

Все изученные метабазиты по петрохимическим характеристикам относятся к первично-магматическим породам дифференцированной толеитовой и известково-щелочной серий, подобных окраинно-континентальным или островодужным современным геодинамическим обстановкам. На диаграмме MgO-(FeO+Fe2O3 ) (рис.  6) породы Алданского щита занимают положение очень близкое с данными по заведомо магматическим породам, они делятся на две группы: первая - это тренд дифференциации и, вторая, менее четкая, группа - кумулятивного тренда (см. раздел 4). Некоторый сдвиг "вправо" "кумулятивных" точек подобен данным для ксенолитов из кимберлитов Якутии, т. е. кумуляты Алдана относительно более железистые. Первично-магматическая ситуация выражается и в тесной положительной корреляции железа и титана в породах: на диаграмме (FeO+Fe2O3)/(FeO+ Fe2O3+MgO) - TiO2 - тренд точек по Алданскому щиту аналогичен приведенным на рис.  7, но они несколько сдвинуты вправо, что ближе островодужному магматизму. Особенно важна в нашем случае диаграмма SiO2 - Js (рис.  11), где, несмотря на большой разброс данных и на то, что химические анализы сделаны преимущественно для магнитных пород (т. е. их роль на рис.  11 завышена), на рис.  11а точки можно разделить на две группы: первая - магнитная ( Js>2 Ам2/кг), охватывающая широкий интервал SiO2 от 33 до 70%, соответствует тренду магматической дифференциации; вторая - немагнитная ( Js
    Рис. 12
    Рис. 13

Величина магнитной восприимчивости ( k ) меняется от 10-5 до 10-1 ед. СИ и имеет бимодальное распределение (рис.  12): 62% образцов практически немагнитны, их мода в интервале (0, 035-0, 1) 10-3 ед. СИ, только 18% образцов магнитны, их мода в интервале 1-2 10-2 ед. СИ. Структурно-чувствительные характеристики Jrs/Js и Qn изменяются в пределах от 0, 002 до 0, 2 и от 0, 08 до 2, 7, соответственно, что говорит о преобладании многодоменных крупных зерен во всех изученных породах. В редких образцах, как правило, немагнитных, - Jrs/Js>0, 1 и Qn>1 (иногда более 10), что, очевидно, связано с присутствием мелких зерен магнетита, концентрация которых не превышает 0, 05%. По данным термомагнитного анализа, магнитные минералы представлены практически только магнетитом ( Tc около 580oС). В двух образцах присутствует пирротин ( Tc =340oС). Между k и содержанием рудных минералов, определенным по шлифам, корреляция отсутствует (рис.  13), в общем концентрация рудных минералов (по шлифам) в несколько раз превышает концентрацию магнетита, определенную по Js или k. Это, наряду с микрозондовыми данными, говорит о преобладании среди рудных минералов таких как ильменит.

    Рис. 14

Среди немагнитных пород преобладают метаосадочные породы, кислые породы (видимо, главным образом, коллизионного происхождения), такие как граниты, гранодиориты, сиениты, гранитогнейсы, биотитсодержащие гнейсы и кристаллические сланцы, в общем на долю осадочных и "кислых" пород приходится 70% образцов, и на долю пироксенитов, габбро, пироксеновых и амфиболовых гнейсов и сланцев, амфиболитов, т. е. основных пород, приходится только 30%; среди магнитных пород преобладают основные - габбро, амфиболиты, пироксеново-амфиболовые гнейсы, на их долю приходится 64% шлифов, а на долю кислых пород приходится 36%. Заметную долю кислых пород среди магнитных отчасти можно объяснить широкой гранитизацией первичных пород. Это выражается в поведении суммы содержаний кварца и щелочного полевого шпата. Так, в интервале суммы содержаний этих минералов от 0 до 25-30% наблюдается большой разброс k , от немагнитных до k =4 10-2 ед. СИ, далее восприимчивость пород резко падает (рис.  14). По-видимому, указанные 25-30% кварца+калишпата знаменуют переход от частично гранитизированных пород к собственно магматическим кислым породам. Отмеченное распределение магнитных и немагнитных разностей среди петрографических групп пород отражает, очевидно, первичное распределение магнитных минералов в них, которое заметно не нарушилось последующим метаморфизмом, сопровождавшимся стрессом. Первично-магматическое распределение магнитных минералов подтверждается рядом петрохимических характеристик (см. выше). Подавляющее большинство зерен магнетита находятся в сростках с ильменитом, т. е. вероятнее всего, эти сростки являются продуктами разрушения первичных титаномагнетитов и, возможно, гемоильменитов. Даже в тех образцах, где рудные минералы выделились за счет силикатов на различных стадиях регрессивного метаморфизма, наблюдаются сростки и ламелли ильменита в магнетите. Столь высокая доля немагнитных пород в коллекции объясняется, во-первых, как сказано выше, заметным числом первично-немагнитных кислых магматических пород, во-вторых, наличием первично-немагнитныых осадочных пород, в-третьих, кумулятивныыми основными породами (рис.  11), в-четвертых, в архее магматический режим проходил в более восстановительных условиях, чем в более позднее время, наконец, в-пятых, в процессе регрессивного метаморфизма чаще идет уничтожение рудных минералов. Повышенная намагниченность сформировалась в результате последующих процессов преобразования рудных минералов, в первую очередь ильменита. В зависимости от величины магнитной восприимчивости (табл.  2), т. е. от содержания магнитных минералов, породы не различаются практически по степени рассланцевания и/или по степени гранитизации (рис.  14), они весьма однородны, что отражает общую сходную степень регионального метаморфизма, сопровождавшегося стрессом. Однородность стрессового метаморфизма отразилась в однообразном поведении величины анизотропии магнитной восприимчивости (табл.  2). Анизотропия немагнитных пород определяется практически исключительно парамагнитными минералами, а магнитных пород - магнетитом. При этом средние величины kmax/kmin и E тех и других (табл.  2) очень близки. Можно говорить, соответственно, о единой природе анизотропии обеих групп пород. Величина k слабо коррелирует со степенью вторичных изменений (регрессивный метаморфизм и др. ) (табл.  2): от немагнитных разностей до k =10-2 ед. СИ степень вторичных изменений пород плавно нарастает от 1, 4 до 1, 6 и у наиболее магнитных пород резко падает до 1, 2. Значит, основная масса магнетита образовалась до стрессового метаморфизма, небольшая часть магнетита образовалась в процессе вторичных изменений. Появление вторичного магнетита происходит после стресса, что видно по отсутствию корреляции между степенью вторичных изменений и анизотропией (табл.  2. ). Воронежский кристаллический массив.

[Геншафт и др. , 1997]. Воронежский кристаллический массив представляет собой выступ докембрийского фундамента. На его территории выделяется серия архейских блоков, разделенных линейными грабенсинклиналями. Линейные зоны сложены в разной степени метаморфизованными вулканогенно-осадочными породами и интрузивными телами. Структурные элементы массива выделяются в геофизических полях, в частности, в аномальном магнитном поле. Магнитные аномалии (обычно линейно вытянутые), как правило, связаны с ультраметаморфическими и магматическими телами [Надежда и др. , 1989]. Среди изученных образцов преобладают ортопороды - гранитоиды, габбро-диориты, габброиды, пироксениты; парапороды представлены плагиогнейсами, кварцитами, различными сланцами. Породы подверглись метаморфизму в гранулитовой фации, амфиболизированы, часто биотитизированы. Во всех ортопородах из рудных минералов присутствуют крупнозернистые магнетит и ильменит (часто сростки), крупные зерна распавшегося титаномагнетита (в габбро). Отмечены мелкие зерна магнетита и сульфидов в порах и по краям силикатов. По геотермометру Линдсли сростки ильменита и магнетита образовались в интервале температур 1000-460oС при fO2, близком буферу QMF. По данным термомагнитного анализа обнаруживается только магнетит ( Tc 580oС), либо кривые Js(T) имеют гиперболическую парамагнитную форму. Большинство образцов имеют малую магнитную анизотропию (менее 1, 10), заметную анизотропию (средняя 1, 22) имеют образцы гранитоидов.

    Рис. 15

Страницы: 1, 2, 3, 4