бесплатно рефераты

бесплатно рефераты

 
 
бесплатно рефераты бесплатно рефераты

Меню

Альтернативная энергия - (реферат) бесплатно рефераты

p>6. Разработка и осуществление программы развития ветроэнергетики Украины должны проводиться с учетом требований “Отраслевых руководящих документов. Определение экономической эффективности капитальных вложений в энергетику. Методика. Общие методические положения”, ГКД 340. 000. 001. 9, так как программа фирмы “Виндэнерго Ltd” разработана без учета этих требований.

К ОЦЕНКЕ ПЕРСПЕКТИВ И УСЛОВИЙ РАЗВИТИЯ ВЕТРОЭНЕРГЕТИКИ В КРЫМУ Территория Автономной Республики Крым обладает достаточно большим ветровым потенциалом на Украине и рассматривается как наиболее перспективный район для строительства установок по его использованию и выработке дополнительной электроэнергии.

Анализ ветроэнергетических ресурсов Крыма показывает, что среднегодовые значения скорости ветра на территории полуострова колеблются в пределах от 3 до б м/с, причем максимальные вероятности ч=3, 5 м/с (более 60%) отмечаются на Южном берегу Крыма, Керченском полуострове и в районе горного массива Ай-Петри.

Развитие ветроэнергетики в Крыму обусловлено следующими причинами: дефицитностью традиционных природных невозобновляемых топливно-энергетических ресурсов, критическим состоянием собственных генерирующих источников и неустойчивой работой крымской энергосистемы в целом;

высокими экологическими требованиями к энергопроизводящим и топливо-потребляющим источникам, связанным с развитием в регионе индустрии отдыха и туризма;

удачным географическим положением Крыма и его уникальными природно-климатическими возможностями;

наличием свободных земельных площадей, пригодных для размещения объектов ветроэнергетики;

наличием свободных трансформаторных мощностей с низким коэффициентом использования, особенно в зимний период года (зона Северо-Крымского канала). Использование ветровой энергии не территории Крымского региона предусматривается по двум основным направлениям:

строительство ветроэнергетических установок и их комплексов ветроэлектрических станций (ВЭС) мощностью 100 кВт и выше и работа в параллельном режиме с общей энергосистемой;

строительство ветроустановок небольшой мощности от 4 кВт и выше для питания относительно небольших отдельных объектов (ферм, арендных хозяйств, жилых и общественных зданий и пр. ) и работа их в автономном режиме. Работы по первому направлению выполняются в настоящее время предприятием ГАЕК Крымэнерго и Государственным Комитетом по водному хозяйству Автономной Республики Крым согласно “Программе развития ветроэнергетики и строительства ветростанции в Крыму до 2010 г. ”, которая вошла составной частью в Комплексную программу строительства ветроэлектростанции Украины во исполнение Постановления Кабинета Министров Украины от 1506. 44 г № 415 “О строительстве ветровых электростанций и Указа Президента Украины от 2. 03. 96 г. № 159, 96 “О строительстве ветровых электростанций”.

Программой определены наиболее перспективные площадки строительства ВЭС, потенциал энергии ветра и основные научно-технические решения по его использованию.

В настоящее время в Крыму введены в эксплуатацию и планируются до 2010 г. строительство следующих ВЭС:

    а) по предприятиям ГАЭК “Крымпромэнерго”:

Донузлавская ВЭС с установленной мощностью 5, 7 МВт. Введена в действие в мае 1993 г. , смонтировано 53 ветроагрегата типа USW-56-100 мощностью 107 кВт. ч. каждый. Выработано на настоящий момент за весь период работы 5341674 кВт. ч электроэнергии, в том числе за 1996 г. - 2600000 кВт. ч. Комплексной программой строительства ВЭС планируется доведение мощностей до 45 МВт к 2000 г. Черноморская ВЭС - установленная мощность 0, 8 МВт, оснащена 4 ветроаг-регатами АВЭ-250 отечественного производства. Выработано 656960 кВт. ч. Комплексной программой предусматривается доведение мощности первой очереди к 2000 г. до 5 МВт.

Акташская ВЭС - установленная мощность 1, 6 МВт, оснащенная отечественными ветроагрегатами АВЭ-250. Выработано за весь период 769060 кВт. ч. электроэнергии, в том числе за 1996г. - 219176 кВт. ч. Комплексной программой планируется доведение первой очереди мощностью до 9, 6 МВт. В дальнейшем планируется увеличение мощности до 17, 3 МВт. Дальнейшее наращивание мощностей в системе “Крымэнерго”, согласно Комплексной программе строительства ВЭС на Украине, планируется в Восточном Крыму (Чаганы), где имеется наибольший ветровой потенциал. Предусматривается увеличение мощности ВЭС до 710 МВт. б) по объектам Госводхоза АР Крым;

Сакская ВЭС - установленная мощность 0, 6 МВт, оснащенная 6 ветрогенера-торами USW-56-100, выработано за весь период 70520 кВт. ч. электроэнергии, в том числе за 1996 г. - 61210 кВт. ч... Планируется доведение ее мощности к 2000 г. до 20 МВт.

Планируется также строительство : Мироновской ВЭС с доведением ее мощности к 2000 г. до 17 МВт, Джанкойской ВЭС с доведением ее мощности к 2005 г. до 16 МВт, Пресноводненской ВЭС с доведением ее мощности к 2005 г до 25 МВт и Восточно-Крымской ВЭС с доведением ее мощности к 2010 г-до 150 МВт. Кроме того, Комплексной программой строительства ВЭС в Крыму к 2010 г. планируется:

строительство Западно-Сивашской ВЭС мощностью 10, 6 МВт в экономической зоне “Сиваш”;

строительство Судакской ВЭС с перспективными ветроагрегатами мощностью 300-500 кВт, с доведением ее установочной мощности к 2010 г. до 50 МВт; строительство Ялтинской ВЭС в пгт. Кацивели с перспективными ветроагре-гатами мощностью 300-500 кВт, с доведением ее мощности к 2005 г до 10 МВт. Строительство ВЭС, предусмотренное Комплексной программой рассчитано до 2010 г. и на эти цели программой выделено 773, 7 млн. грн, причем 46, 45% обеспечивается из специального расчетного фонда при НДЦ Украины созданного для целевого финансирования строительства ВЭС. Остальные средства предполагается формировать за счет инвестиций совместных предприятий и других источников, не запрещенных законодательством Украины. Для привлечения инвесторов для участия в строительстве ветроэлектростанции, Правительство Крыма издало Постановление от 25. 01. 96 г. №23 “О развитии ветроэнергетики в Крыму”, где предоставляются льготы при производстве и строительстве ветроэлектростанции. Работы должны осуществляться на договорной основе, с конкретными фирмами исполнителями, финансирование работ предпочтительно из специальных отечественных и зарубежных фондов.

Принимая во внимание, что развитие ветроэнергетики может быть только при наличии обученного персонала, программой предусмотрено создание центра сервисного обслуживания, среднего и капитального ремонта, а также межведомственного центра испытаний и сертификации ВЭУ на базе ликвидируемой СЭС - 5 в г. Щелкино. В функции центра предполагается включить: сбор, обработку и осуществление обмена информации с заинтересованными организациями;

    формирование законодательно-нормативной базы;
    участие в проектных работах;
    испытание и сертификация ВЭУ;

методическая и экспертная помощь организациям и физическим лицам; рекламно-выставочная деятельность;

метеорологические исследования и выбор площадок установки ВЕУ. Комплексной программой строительства ВЭС до 2000 г. предусмотрено на эти цели 8, 97 млн. грн.

Таким образом, к 2010 г. , при успешном развитии Комплексной программы строительства ветроэлектростанции Украины, предполагается довести общую мощность ВЭС Крыма до 480 МВт, что позволит повысить надежность энергосбережения Крыма и дать экономию органического топлива в размере 290 тыс. т. у. т. в год.

Выполнение работы по второму направлению - внедрению малой ветроэнергетики в Крыму - возможно на основании научно-технических и опытно-конструкторских разработок, выполненных в КПИ и ИЭД НАМ Украины. К настоящему времени разработана серия ветроустановок разных мощностей от 0, 5 до 100 кВт и разного назначения, которые предназначены для решения следующих целей и задач по экономии ТЭР:

автономное снабжение электроэнергией потребителей, не связанных с централизованными электрическими сетями;

выработка электроэнергии постоянного тока напряжением 12-14 В; отопление и горячее водоснабжение помещений, теплиц и др;

    подъем воды и скважин из колодцев;
    малое орошение и мелиорация;
    переработка сельскохозяйственной продукции.

Общая выработка электроэнергии, за счет строительства ветроагрегатов малой мощности может составить к 2000 г. 3, 96 млн. кВт/ч. , за период с 2001 по 2005 гг. –6, 41 млн. кВт/ ч и за период с 2006 по 2010 гг. - 11, 59 млн. кВт/ч. При этом, необходимые капитальные вложения в разработку и строительство ВЭУ малой мощности составляет соответственно: 4, 03; 4, 86; 6, 57 млн. грн. , кроме того стоимость проектно-конструкторских работ за этот период составляет - 1, 4 млн. грн.

Основными направлениями по внедрению ветроагрегатов малой мощности в Крыму на ближайший период являются:

    проведение маркетинговых исследовании и рекламы;

государственное экономическое стимулирование производителей и потребителей ветроэнергетического оборудования малой мощности;

оказание государственной финансовой поддержки предприятиям для организации серийного производства ветроагрегатов на территории АРК;

проведение разъяснительной работы среди населения Крыма о принципах энергетической эффективности и экономической целесообразности строительства ветроустановок малой мощности. [3], [8].

    Солнце.

Солнечные электростанции. После энергетического кризиса 1973 г. правительствами стран и частными компаниями были приняты экстренные меры по поиску новых видов энергетических ресурсов для получения электроэнергии. Таким источником в первую очередь стала солнечная энергия. Были разработаны параболо-цилиндрические концентраторы. Эти устройства концентрируют солнечную энергию на трубчатых приемниках, расположенных в фокусе концентраторов. Интересно, что в 1973 г. вскоре после начала нефтяного эмбарго был сконструирован плоский концентратор, явившийся успехом научной и инженерной мысли. Это привело к созданию первых солнечных электростанций (СЭС) башенного типа. Широкое применение эффективных материалов, электронных устройств и параболо-цилиндрических концентраторов позволило построить СЭС с уменьшенной стоимостью - системы модульного типа. Началось внедрение этих систем в Калифорнии фирмой Луз (Израиль). Были подписаны контракты с фирмой Эдисон на строительство в южной Калифорнии серии СЭС. В качестве теплоносителя использовалась вода, а полученный пар подавался к турбинам. Первая СЭС, построенная в 1984 г. , имела КПД 14, 5%, а себестоимость производимой электроэнергии 29 центов/(кВт-ч). В 1994 г. фирма Луз реорганизована в компанию Солел, базирующуюся в Израиле, и продолжает успешно работать над созданием СЭС, ведет строительство СЭС мощностью 200 МВт, а также разрабатывает новые системы аккумулирования энергии. В период между 1984 и 1990 г. фирмой Луз было построено девять СЭС общей мощностью 354 МВт. Последние СЭС, построенные фирмой Луз, производят электроэнергию по 13 центов/(кВт-ч) с перспективой снижения до 10 центов/(кБт-ч). Д. Миле из университета Сиднея улучшил конструкцию солнечного концентратора, использовав слежение за Солнцем по двум осям и применив вакуумированный теплоприемник, получил КПД 25--30%. Стоимость получаемой электроэнергии составит 6 центов/(кВт-ч). Строительство первой экспериментальной установки с таким концентратором начато в 1994 г. а Австралийском национальном университете, мощность установки 2 МВт. Считают, что подобная система будет создана в США после 2000 г. и она позволит снизить стоимость получаемой электроэнергии до 5, 4 цента/(кВт-ч). При таких показателях строительство СЭС станет экономичным и конкурентоспособным по сравнению с ТЭС.

Другим типом СЭС, получившим развитие, стали установки с двигателем Стирлинга, размещаемым в фокусе параболического зеркального концентратора. КПД таких установок "может достигать 29%. Предполагается использовать подобные СЭС небольшой мощности для электроснабжения автономных потребителей в отдаленных местностях.

ОТЭС. В перспективе можно использовать для получения электроэнергии разность температуры слоев воды в океане, которая может достигать 20°С. Станции на этой основе (ОТЭС) находятся в разработке. Первый вариант подобной установки мощностью 5 МВт проектируется в Израиле. Меньшие по мощности установки действуют в Австралии, Калифорнии и ряде других стран. Основная сложность перспективы их использования - низкая экономичность и как следствие отсутствие коммерческого интереса.

Фотоэнергетика. Начиная с 70-х годов правительства индустриальных стран израсходовали биллион долларов на разработки фотоэлектрических преобразователей. За последние 10 лет стоимость фотоэлектрических преобразователей снижалась и в 1993 г. достигла 3, 5-4, 75 дол/Вт, а стоимость получаемой энергии 25-40 центов/(кВт/ч). Мировой объем производства с 6, 5 МВт в 1980 г. увеличился до 29 МВт в 1987 г. и в 1993 г. составил более 60 МВт.

В Японии ежегодно выпускается 100 млн. калькуляторов общей мощностью 4 МВт, что составляет 7% мировой торговли фотоэлектрическими преобразователями. Более 20 тыс. домов в Мексике, Индонезии, Южной Африке, Шри-Ланке и в других развивающихся странах используют фотоэлектрические системы, смонтированные на крышах домов, для получения электроэнергии для бытовых целей. Наилучшим примером использования таких систем является Доминиканская республика, где 2 тыс. домов имеют фотоэлектрические установки, сконструированные в последние 9 лет. Стоимость такой установки 2 тыс. дол. В Шри-Ланке израсходовано 10 млн. дол на электрификацию 60тыс. домов с помощью фотосистем. Стоимость установки мощностью 50Вт, включающая фотопанель, источник света и аккумуляторную батарею, составляет 500 дол.

В будущем стоимость ycтaновки для малых систем будет снижаться, например установки с люминесцентными лампами. В Кении в течение последних лет 20 тыс. домов электрифицировано с помощью фотосистем по сравнению с 17 тыс. домами, где за это же время введено централизованное электроснабжение. В Зимбабве за счет кредита в 7 млн. дол, выделенного в 1992 г. , будет электрифицировано 20 тыс. домов в течение 5 лет. Мировым банком выделен кредит в 55 млн. дол. для электрификации 100 тыс. домов в Индии фотосистемами. В США стоимость 1 км распределительных электросетей составляет 13-33 тыс. дол. Контракт на установку мощностью 500 МВт, включающую электроснабжение дома, освещение, радио, телевидение и компьютер, составляет не менее 15 тыс. дол. (включая аккумуляторную батарею). Уже имеется 50 тыс. таких установок в городах и ежегодно строится около 8 тыс. установок. Среди индустриальных стран кроме США также лидируют в использовании фотосистем в домах Испания и Швейцария. Если даже ежегодно в мире будет снабжаться фотосистемами 4 млн. домов (1% тех, что электрифицируются ежегодно), то общая установленная мощность фотосистем составит всего 200 МВт, что в 4 раза меньше мирового производства их в 1993 г. Если производство фотосистем достигнет ежегодно 1% общей продажи энергии в мире, то их производство по сравнению с современным уровнем должно возрасти десятикратно, а увеличение до 10% этой продажи приведет к стократному росту производства фотосистем.

Для успешного внедрения фотосистем их удельная стоимость должна быть снижена в 3-5 раз прежде, чем появятся крупные энергосистемы.

Половина продажи кремния приходится на монокристаллы, поликристаллическая модификация также имеет большое будущее. Большое будущее будут иметь тонкопленочные системы, в частности на основе аморфного кремния. Некоторые образцы фотоэлектро-преобразователей на основе аморфного кремния имеют КПД 10%, удельную стоимость 1 дол/Вт, стоимость получаемой электроэнергии 10-12 центов/(кВт/ч) - это ниже, чем была ее стоимость в 1993 г. Имеется перспектива снижения стоимости к 2000 г. до 10 центов/(кВт /ч) и до 4 центов/(кВт /ч) к 2020 г.

Итак, фотоэнергетика может стать ведущим источником энергии мировой большой индустрии. Это подтверждают сделанные в 1994 г. разработки, считают эксперты. В результате создания новых технологий и повышения технического уровня продукции может быть преодолен барьер для внедрения фотоэлектрических систем, связанный с высокой их стоимостью. Так, по инициативе корпорации Енрон ведется разработка фотоэлектрической станции мощностью 100 МВт для строительства в Неваде, на которой стоимость вырабатываемой электроэнергии составит 5, 5 цента/(кВт/ч). [1] Солнечная энергия является наиболее мощным и доступным из всех видов нетрадиционных и возобновляемых источников энергии в Крыму. Солнечное излучение не только неисчерпаемый, но и абсолютно чистый источник энергии, обладающий огромным энергетическим потенциалом.

В реальных условиях облачности, годовой приход суммарной солнечной радиации на территории Крымского региона находится на уровне 1200-1400 кВтч/м2. При этом, доля прямой солнечной радиации составляет: с ноября по февраль 20-40 %. с марта по октябрь - 40-65%, на Южном берегу Крыма в летние месяцы - до 65-70%.

В Крыму наблюдается также наибольшее число часов солнечного сияния в течение года (2300-2400 часов в год), что создает энергетически благоприятную и экономически выгодную ситуацию для широкого практического использования солнечной энергии.

В то же время, источник имеет довольно низкую плотность (для Крыма до 5 ГДж на 1 м2горизонтальной поверхности) и подвержен значительным колебаниям в | течение суток и года в зависимости от погодных условий, что требует принятия дополнительных технических условий по аккумулированию энергии. Основными технологическими решениями по использованию энергии являются: превращение солнечной энергии в электрическую и получение тепловой энергии для целей теплоснабжения зданий.

Прямое использование солнечной энергии в условиях Крыма, для выработки в настоящее время электроэнергии, требует больших капитальных вложений и дополнительных научно-технических проработок. [8]

Страницы: 1, 2, 3, 4, 5